Integrated course „Energy Economics"
 - Financial management -

Chair of Energy Systems | Department of Energy Systems Technische Universität Berlin

Outline

- Fundamentals of finance
- Time value of money
- Capital structure and cost of capital
- Capital budgeting: NPV method
- NPV vs IRR
- Levelised cost of electricity (LCOE)

Interest rates and inflation

A bank offers a one-year interest rate of 10%.
An individual who deposits $€ 1.000$ will receive $€ 1.100$ in a year.
Rate of inflation is 6% p.a.
A restaurant that charges $€ 10$ for a meal today will be charging $€ 10.60$ for the same meal in a year.

Today, the individual could buy $€ 1.000 / € 10=100$ meals.
In a year, they will be able to buy $€ 1.100 / € 10,60=103,8$ meals.
The resulting increase in consumption is 3,8\% (and not 10\%).

$1+$ Nominal interest rate $=(1+$ Real interest rate $) \times(1+$ Inflation rate $)$
$1+$ Nominal interest rate
Real interest rate $=\frac{1+\text { Inflation rate }}{}-1$

Cash flow and inflation

Nominal cash flow: actual money in cash to be received / paid.
Real cash flow: the cash flow's purchasing power.

Nominal cash flows must be discounted at the nominal rate.
Real cash flows must be discounted at the real rate.

Capital budgeting: NPV (DCF) method

The value of a project is measured by its net present value (NPV): present value of the future cash flows minus the initial investment outlay.

1. Identify forecast all cash flows (revenues and costs) associated with a project (forecast).
2. Map the cashflows on a cash flow time chart.
3. Discount each cashflow using an applicable interest rate.
4. Sum up all the discounted cashflows (DCF) to obtain NPV
5. Invest only if NPV >0 [NPV $=0$ indifferent]

Capital budgeting: NPV (DCF) method

$$
\begin{aligned}
& N P V=\sum_{t=0}^{T} \frac{C F_{t}}{(1+i)^{t}}=-I_{0}+\sum_{t=1}^{T} \frac{C F_{t}}{(1+i)^{t}} \\
& \mathrm{CF}_{\mathrm{t}}=\text { Cash Flow in period } \mathrm{t} \\
& \mathrm{I}_{0} \quad=\text { Investment in period } 0 \\
& \mathrm{i} \quad=\text { Interest rate } / \text { Discount rate } \\
& \mathrm{T} \quad=\text { Time horizon } / \text { Economic lifetime } \\
& \mathrm{t} \quad=\text { Period }
\end{aligned}
$$

Relevant cash flows

CF from financing activities:

- capital expenditures
- sale of assets

CF from operating activities:

- revenues
- operating expenses
- depreciation
- taxes
- change in working capital

Opportunity cost: potential benefit or income that is foregofe as a result of selecting one alternative over another are considered.

Sunk cost: Cost incurred in the past that cannot be changed by any decision are ignored.

Salvation value: In case of abandonment (divestment), assets, typically, retain a residual value (future revenue).

Depreciation tax shield: Yearly depreciation amount is deducted from the income tax base.
The resulting tax saving [depreciation amount x tax rate] is added as a positive cash flow.

NPV method: Calculation example

Discount rate: 7\%

Period \boldsymbol{t}	Investment [1000 EURO]	Cash flow [1000 EURO]	Discount factor $(1+\boldsymbol{i})^{-t}$	PV [1000 EURO]
0	-3000	0	1,000	$-3000,0$
1	0	160	0,935	149,5
2	0	400	0,873	349,4
3	0	400	0,816	326,5
4	0	400	0,763	305,2
5	0	400	0,713	285,2
6	0	400	0,666	266,5
7	0	400	0,623	249,1
8	0	400	0,582	232,8
9	0	400	0,544	217,6
10	0	400	0,508	203,3
11	0	400	0,475	190,0
12	0	400	0,444	177,6
13	0	400	0,415	166,0
14	0	400	0,388	155,1
15	0	400	0,362	145,0
Total (NPV)				418,9

Internal rate of return

$$
N P V=0=-I_{0}+\sum_{t=1}^{T} \frac{C F_{t}}{(1+I R R)^{t}}
$$

IRR is the value of interest rate i such that $\mathrm{NPV}=0$.
NPV rule: NPV > 0
IRR rule:* IRR > WACC (opportunity cost of capital) for mutually exclusive projects: choose the highest IRR

NPV vs. IRR:
amount of surplus vs. percentage return / break-even point absolute return vs. relative return

* for projects with an initial negative cash flow and subsequent positive cash flows

NPV and IRR

Recap: Time value of money, NPV and IRR

Compounding:

$$
K_{T}=K_{0} \cdot(1+i)^{T}
$$

Net Present Value:

$$
N P V=\sum_{t=0}^{T} \frac{C F_{t}}{(1+i)^{t}}=-I_{0}+\sum_{t=1}^{T} \frac{C F_{t}}{(1+i)^{t}}
$$

Discounting:

$$
K_{0}=K_{T} \cdot \frac{1}{(1+i)^{T}}
$$

IRR:

$$
N P V=0=-I_{0}+\sum_{t=1}^{T} \frac{C F_{t}}{(1+I R R)^{t}}
$$

$\mathrm{CF}_{\mathrm{t}}=$ Cash Flow in period t
$\mathrm{I}_{0}=$ Investment in period 0
i = Interest rate / Discount rate
T = Time horizon / Economic lifetime
t $=$ Period

Recap: Annuity

Annuity is a level stream of regular payments during a fixed number of periods.

$$
\begin{aligned}
& K_{0}=\text { Present value } \\
& g=\text { Periodical payment } \\
& i=\text { Interest rate } \\
& q=(1+i) \text { Interest factor } \\
& T=\text { Number of periods }
\end{aligned}
$$

Value at the end of period 0

$$
K_{0}=g \cdot\left(1+\frac{1}{q}+\frac{1}{q^{2}}+\ldots+\frac{1}{q^{T}}\right)=g \cdot \frac{q^{T}-1}{q-1} \cdot \frac{1}{q^{T}}=g \cdot \frac{1-q^{-T}}{q-1}
$$

$$
K_{0}=g \cdot \frac{q^{T}-1}{q-1} \cdot \frac{1}{q^{T}}=g \cdot \frac{1-q^{-T}}{q-1}
$$

$$
K_{0}=g \cdot \text { Annuity } \text { factor }_{i, T} \quad \text { with } \quad \text { Annuity } \text { factor }_{i, T}=\frac{1}{i}-\frac{1}{i(1+i)^{T}}
$$

Annuity factor

| | Interest rate [\%] | | | | | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Years | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 |
| 1 | 0.971 | 0.966 | 0.962 | 0.957 | 0.952 | 0.943 | 0.935 | 0.926 | 0.917 | 0.909 |
| 2 | 1.913 | 1.900 | 1.886 | 1.873 | 1.859 | 1.833 | 1.808 | 1.783 | 1.759 | 1.736 |
| 3 | 2.829 | 2.802 | 2.775 | 2.749 | 2.723 | 2.673 | 2.624 | 2.577 | 2.531 | 2.487 |
| 4 | 3.717 | 3.673 | 3.630 | 3.588 | 3.546 | 3.465 | 3.387 | 3.312 | 3.240 | 3.170 |
| 5 | 4.580 | 4.515 | 4.452 | 4.390 | 4.329 | 4.212 | 4.100 | 3.993 | 3.890 | 3.791 |
| 6 | 5.417 | 5.329 | 5.242 | 5.158 | 5.076 | 4.917 | 4.767 | 4.623 | 4.486 | 4.355 |
| 7 | 6.230 | 6.115 | 6.002 | 5.893 | 5.786 | 5.582 | 5.389 | 5.206 | 5.033 | 4.868 |
| 8 | 7.020 | 6.874 | 6.733 | 6.596 | 6.463 | 6.210 | 5.971 | 5.747 | 5.535 | 5.335 |
| 9 | 7.786 | 7.608 | 7.435 | 7.269 | 7.108 | 6.802 | 6.515 | 6.247 | 5.995 | 5.759 |
| 10 | 8.530 | 8.317 | 8.111 | 7.913 | 7.722 | 7.360 | 7.024 | 6.710 | 6.418 | 6.145 |
| 11 | 9.253 | 9.002 | 8.760 | 8.529 | 8.306 | 7.887 | 7.499 | 7.139 | 6.805 | 6.495 |
| 12 | 9.954 | 9.663 | 9.385 | 9.119 | 8.863 | 8.384 | 7.943 | 7.536 | 7.161 | 6.814 |
| 13 | 10.635 | 10.303 | 9.986 | 9.683 | 9.394 | 8.853 | 8.358 | 7.904 | 7.487 | 7.103 |
| 14 | 11.296 | 10.921 | 10.563 | 10.223 | 9.899 | 9.295 | 8.745 | 8.244 | 7.786 | 7.367 |
| 15 | 11.938 | 11.517 | 11.118 | 10.740 | 10.380 | 9.712 | 9.108 | 8.559 | 8.061 | 7.606 |
| 20 | 14.877 | 14.212 | 13.590 | 13.008 | 12.462 | 11.470 | 10.594 | 9.818 | 9.129 | 8.514 |
| 25 | 17.413 | 16.482 | 15.622 | 14.828 | 14.094 | 12.783 | 11.654 | 10.675 | 9.823 | 9.077 |
| 30 | 19.600 | 18.392 | 17.292 | 16.289 | 15.372 | 13.765 | 12.409 | 11.258 | 10.274 | 9.427 |
| 35 | 21.487 | 20.001 | 18.665 | 17.461 | 16.374 | 14.498 | 12.948 | 11.655 | 10.567 | 9.644 |
| 40 | 23.115 | 21.355 | 19.793 | 18.402 | 17.159 | 15.046 | 13.332 | 11.925 | 10.757 | 9.779 |
| 45 | 24.519 | 22.495 | 20.720 | 19.156 | 17.774 | 15.456 | 13.606 | 12.108 | 10.881 | 9.863 |
| 50 | 25.730 | 23.456 | 21.482 | 19.762 | 18.256 | 15.762 | 13.801 | 12.233 | 10.962 | 9.915 |

Slide 14

Capital recovery factor

	Interest rate [\%]									
Years	3.0	3.5	4.0	4.5	5.0	6.0	7.0	8.0	9.0	10.0
1	1.030	1.035	1.040	1.045	1.050	1.060	1.070	1.080	1.090	1.100
2	0.523	0.526	0.530	0.534	0.538	0.545	0.553	0.561	0.568	0.576
3	0.354	0.357	0.360	0.364	0.367	0.374	0.381	0.388	0.395	0.402
4	0.269	0.272	0.275	0.279	0.282	0.289	0.295	0.302	0.309	0.315
5	0.218	0.221	0.225	0.228	0.231	0.237	0.244	0.250	0.257	0.264
6	0.185	0.188	0.191	0.194	0.197	0.203	0.210	0.216	0.223	0.230
7	0.161	0.164	0.167	0.170	0.173	0.179	0.186	0.192	0.199	0.205
8	0.142	0.145	0.149	0.152	0.155	0.161	0.167	0.174	0.181	0.187
9	0.128	0.131	0.134	0.138	0.141	0.147	0.153	0.160	0.167	0.174
10	0.117	0.120	0.123	0.126	0.130	0.136	0.142	0.149	0.156	0.163
11	0.108	0.111	0.114	0.117	0.120	0.127	0.133	0.140	0.147	0.154
12	0.100	0.103	0.107	0.110	0.113	0.119	0.126	0.133	0.140	0.147
13	0.094	0.097	0.100	0.103	0.106	0.113	0.120	0.127	0.134	0.141
14	0.089	0.092	0.095	0.098	0.101	0.108	0.114	0.121	0.128	0.136
15	0.084	0.087	0.090	0.093	0.096	0.103	0.110	0.117	0.124	0.131
20	0.067	0.070	0.074	0.077	0.080	0.087	0.094	0.102	0.110	0.117
25	0.057	0.061	0.064	0.067	0.071	0.078	0.086	0.094	0.102	0.110
30	0.051	0.054	0.058	0.061	0.065	0.073	0.081	0.089	0.097	0.106
35	0.047	0.050	0.054	0.057	0.061	0.069	0.077	0.086	0.095	0.104
40	0.043	0.047	0.051	0.054	0.058	0.066	0.075	0.084	0.093	0.102
45	0.041	0.044	0.048	0.052	0.056	0.065	0.073	0.083	0.092	0.101
50	0.039	0.043	0.047	0.051	0.055	0.063	0.072	0.082	0.091	0.101

Task 1) NPV and IRR
A company in the waste disposal sector plans to buy a garbage truck to transport waste from a landfill to a waste incineration plant. The truck costs 500 $000 €$. Due to the operation of the truck, an annual constant cash flow of 120 $000 €$ is estimated. The estimated lifetime of the truck is 6 years, after this period its residual value is $20000 €$.
a) Is the investment profitable? (Assuming an interest rate of 10\%)?

To answer the question, find NPV.

CF (TE)
$-500 \begin{array}{lllll}120 & 120 & 120 & 120 & 120 \\ P V_{\text {annuity }}=g \cdot A F & 120 \\ & 20 \%\end{array}$
$=120000 t \cdot 4,355=522600 t$

$$
=33.899 \neq>0
$$

\Rightarrow profitable

Task 1) NPV and IRR

A company in the waste disposal sector plans to buy a garbage truck to transport waste from a landfill to a waste incineration plant. The truck costs 500 $000 €$. Due to the operation of the truck, an annual constant cash flow of 120 $000 €$ is estimated. The estimated lifetime of the truck is 6 years, after this period its residual value is $20000 €$.
b) What is the Internal Rate of Return (IRR)?

Find; at which $N P V=0$
iter abe with different estimated IRX values until NDV ≈ 0.

Task 1) NPV and IRR
A company in the waste disposal sector plans to buy a garbage truck to transport waste from a landfill to a waste incineration plant. The truck costs 500 $000 €$. Due to the operation of the truck, an annual constant cash flow of 120 $000 €$ is estimated. The estimated lifetime of the truck is 6 years, after this period its residual value is $20000 €$. ty at $10 \% \mathcal{N P V}>0$,
b) What is the Internal Rate of Return (IRR)? IRR must be $>10 \%$

$$
i R R=12,25 \%
$$

See Excel file on calculating in Excel.

Task 2) Break even and Production threshold

The investment costs for a production plant are 1 Min. $€$. The capacity of the production plant is 100 units per year, with variable costs per unit being $80 €$. The estimated lifetime of the production plant is 7 years. Assume an interest rate of 8%.
a). How much are the annual capital costs?

$$
\begin{aligned}
& i_{0}=1000 \cdot 00 f \\
& i=8 \% \\
& T=7 y \\
& g=i_{0} \cdot C R F_{8}=7 y \quad \text { or: } g=\frac{l_{0}}{A F_{8 \%}, 7 y} \\
& \text { annual } \\
& \text { capital }=1000.000 \in \cdot 0,192=192,000 \neq 1 a
\end{aligned}
$$

Task 2) Break even and Production threshold
The investment costs for a production plant are 1 Min. $€$. The capacity of the production plant is 100 units per year, with variable costs per unit being $80 €$. The estimated lifetime of the production plant is 7 years. Assume an interest rate of 8%.
b) At which price is the production profitable?

$$
\begin{aligned}
P_{\text {breakeven }} & =\frac{C \text { fix }}{Q}+C_{\text {var }} \\
P_{\text {breakeven }} & =\frac{192000 \epsilon}{100 \text { units }}+80 \text { t/umit }= \\
& =2000 \text { t/unit }
\end{aligned}
$$

Task 2) Profit threshold and Production threshold

The investment costs for a production plant are 1 Mio . $€$. The capacity of the production plant is 100 units per year, with variable costs per unit being $80 €$. The estimated lifetime of the production plant is 7 years. Assume an interest rate of 8%.
c) At which price is the production threshold reached?

$$
P_{\text {shestdous }}=\text { Cur }
$$

$$
80 \text { Elunif }
$$

Levelised cost of electricity (LCOE)

Generic formula:

$$
N P V=\sum_{t=0}^{T} \frac{C F_{t}}{(1+i)^{t}}=-I_{0}+\sum_{t=1}^{T} \frac{C F_{t}}{(1+i)^{t}}
$$

For electricity generation: CF are derived from operating cost and revenues from selling electricity

$$
N P V=-I_{0}+\sum_{t=1}^{T} \frac{\left(p_{E, t}-o c_{t}\right) \cdot Q_{t}}{(1+i)^{t}}=-I_{0}+\left(p_{E}-o c\right) \cdot Q \cdot \sum_{t=1}^{T} \frac{1}{(1+i)^{t}}
$$

oc operating cost per unit of energy Q
p_{E} revenue per unit of energy Q
Q total amount of electricity output over lifetime
Solving for p_{E} results in levelised cost of electricity (LCOE):

$$
p_{E}=\frac{I_{0}}{Q \cdot A F_{i, T}}+o c
$$

Levelised cost of electricity (LCOE)

$$
p_{E}=\frac{I_{0}}{Q \cdot A F_{l, T}}+o c \quad \begin{aligned}
& \text { lifetime costs divided by } \\
& \text { lifetime electricity output }
\end{aligned}
$$

Lifetime costs: PV of total cost of building and operating

LCOE allows comparison of technologies regardless of lifetime, installed capacity, cost of capital, risk and return.

- initial capital cost*
* specific investment costs: investment costs divided by capacity
- annual operating expenses
- capacity factor
- discount rate
- operational life

Levelised cost of electricity (LCOE)

How to calculate the generation costs per unit of electricity?

$$
\mathrm{LCOE}=\frac{\mathrm{I}_{0} \cdot \mathrm{CRF}_{\mathrm{i}, \mathrm{t}}}{Q_{\mathrm{t}}}+\mathrm{oc}
$$

$Q_{t}=$ Cap * FLH
$Q_{t} \quad$ annual electricity output Cap installed capacity (rated power)
FLH full load hours: annual output divided by Cap
Capacity factor $=\frac{\mathrm{Q}_{\mathrm{t}}[\mathrm{kWh}]}{\operatorname{Cap}[\mathrm{kW}] * 8.760 \mathrm{~h}}$

