

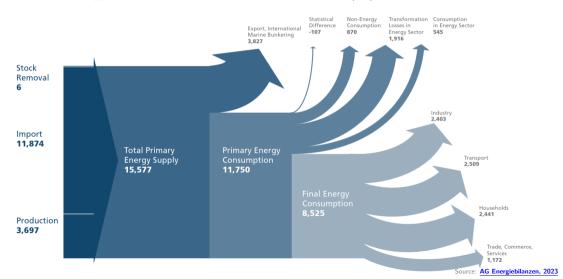
Energy Economics, Winter Semester 2025-6 Lecture 2: Energy Balances

Prof. Tom Brown, Philipp Glaum

Department of Digital Transformation in Energy Systems, Institute of Energy Technology, TU Berlin

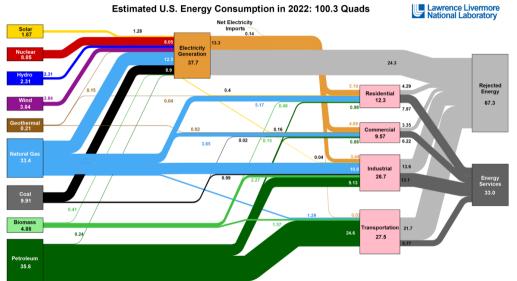
Unless otherwise stated, graphics and text are Copyright ©Tom Brown, 2021-5. Graphics and text for which no other attribution are given are licensed under a Creative Commons Attribution 4.0 International Licence.

Table of Contents

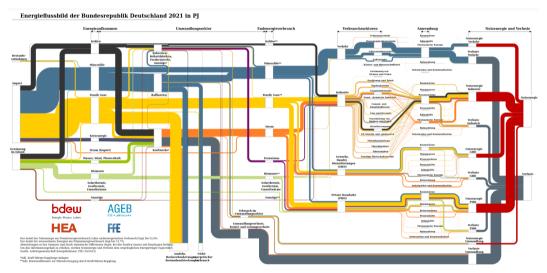

- 1. Measuring Energy
- 2. Energy Balances

Measuring Energy

Goal: Understand Energy Flow Through the Economy



Example: energy balance for Germany in 2022 in Petajoule (PJ)

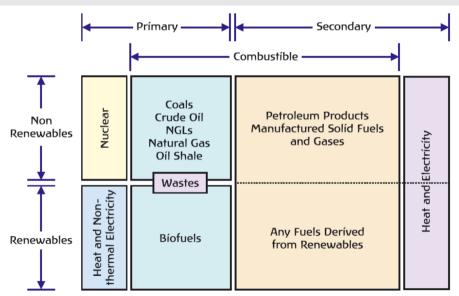

Example: Sankey diagram for US in 2022

Example: Useful energy (Nutzenergie) for Germany 2021

Energy conversion/transformation processes

Output	Mechanical	Thermal	Chemical		
Input	energy	energy	energy	Electricity	Radiation
Mechanical energy	_	Frictional heat	_	Hydropower turbine	_
Thermal energy	Heat engine	_	Thermo- chemistry	Electrical generator	_
Chemical energy	Combustion engine	Boiler	_	Fuel cell	Gas lamp
Electricity	Electric engine	Induction heater	Electrolysis	_	Electric bulb
Radiation	Laser	Microwave oven	Solar chemistry	Photovoltaic	_
Nuclear energy	_	Nuclear reactor	_	_	Radioactivity

Definitions: Primary Versus Final Versus Useful Energy


Definitions of energy are oriented towards conventional energy sources like coal, oil and gas.

- **Primary energy** is energy as found in nature before it undergoes any transformation (crude oil, coal, gas, biomass, nuclear, wind, solar).
- Secondary energy is energy after conversion processes, either chemical or physical (refined fuels like gasoline, electricity from a coal power plant).
- Final energy is the energy as it is sold to end users (electricity, refined fuels like gasoline, gas for building heating).
- **Useful energy** is the energy after conversion by the consumer, available to be used (heat in a home, light, mechanical work).
- Energy services is what the consumer actually wants: a warm home, transportation from A to B, manufactured goods, etc.

The two most commonly used definitions are **primary** and **final** energy, since they are **easier to measure** in a fossil-fuelled world. With more focus on renewables and electrification, this **may change**!

Classification of Energy Sources

Units of Energy: Joule and tonne of oil equivalent

Joule (J) is the SI unit of energy.

Conventional primary energy sources are often measured in units corresponding to their natural form: volume, mass etc.

We can convert from measurements of mass [kg] and volume [m³] to energy units using the calorific value [J/kg, J/m³], which measures the heat from combustion.

Example: the unit **tonne of oil equivalent** (toe) is the energy generated by burning one metric ton of oil. Since the calorific value of oil is 41.88 MJ/kg, we have

$$1 \text{ toe} = 41.88 \text{ GJ}$$

[Reminder: k = kilo = 1e3, M = Mega = 1e6, G = Giga = 1e9, T = Tera = 1e12, P = Peta = 1e15, E = Exa = 1e18.]

Lower Heating Values of Energy Fuels

	Density	Energy [109 J]	Remarks
1 t Crude oil	0.86 g/cm ³	39-43	Mean: 41.9·10 ⁹ J
1 Barrel (bbl) crude oil		5.7	=159 I (ca. 50/365 t.o.e.)
1 t Heating oil el.	0.84 g/cm ³	42.5	at 15–20 ºC
1 t Gasoline	0.75 g/cm ³	43.1	at 15–20 °C
1 t Methanol (CH ₃ OH)	0.80 g/cm ³	19.7	
1 t Ethanol (C ₂ H ₅ OH)	0.80 g/cm ³	26.9	
1 t Liquefied Petroleum Gas LPG	0.53 g/cm ³	45.9	at 2–18 bar
1 t Liquefied Natural Gas LNG	0.47 g/cm ³	47.2	at –164 °C
1 t Hydrogen (LH ₂)	0.071 g/cm ³	120.4	at –252 ºC
1000 m³ Natural gas L	0.82 kg/m ³	33.4	Mean: 35.6·10 ⁹ J
1000 m³ Natural gas H	0.79 kg/m ³	36.6	
1000 m ³ Compressed gas CNG	156 kg/m ³	7000	at 200 bar
1000 m³ Petroleum gas		40.7	
1000 m ³ Methane (CH ₄)	0.65 kg/m ³	35.8	
1000 m ³ Propane (C ₃ H ₈)	1.87 kg/m ³	86.7	
1000 m ³ hydrogen (H ₂)	0.09 kg/m ³	10.8	
1000 m ³ Liquefied hydrogen (H ₂)	15.6 kg/m ³	1950	at 200 bar
1 t Hard coal		29-35	Mean 29.3· 10 ⁹ J
1 t Lignite		7.5–13	
1 t Wood	0.6 g/cm ³	14.6	3.5 · 10 ⁶ kcal
1 t Uranium oxide (U ₃ O ₈)		414'000	Light Water Reactor LWR

Higher and Lower Heating Values

- Lower Heating Value (LHV) is the maximum amount of usable heat from combustion without counting the condensation enthalpy of water vapor contained in the exhaust gas.
- Higher Heating Value (HHV) includes the condensation enthalpy of water vapor contained in the exhaust gas. It is always higher than the LHV (e.g. 11% higher for methane).

Fuel	State at ambient temperature and pressure	HHV (MJ/kg)	LHV (MJ/kg)
Hydrogen	Gas	141.9	119.9
Methane	Gas	55.5	50
Ethane	Gas	51.9	47.8
Gasoline	Liquid	47.5	44.5
Diesel	Liquid	44.8	42.5
Methanol	Liquid	20	18.1

LHV is most commonly used in European statistics. HHV becomes relevant in e.g. condensing combined heat and power plants (CHP) where vapor is condensed.

Power: Flow of energy

Power is the rate of consumption of energy.

It is measured in Watts:

$$1 \text{ Watt } = 1 \text{ Joule per second}$$

The symbol for Watt is W, 1 W = 1 J/s.

$$1 \text{ kilo-Watt} = 1 \text{ kW} = 1,000 \text{ W}$$

$$1~\text{mega-Watt} = 1~\text{MW} = 1{,}000{,}000~\text{W}$$

$$1 \text{ giga-Watt} = 1 \text{ GW} = 1,000,000,000 \text{ W}$$

$$1 \text{ tera-Watt} = 1 \text{ TW} = 1,000,000,000,000 \text{ W}$$

Power: Examples of consumption

At full power, the following items consume:

Item	Power
New efficient lightbulb	10 W
Old-fashioned lightbulb	70 W
Single room air-conditioning	1.5 kW
Kettle	2 kW
Factory	\sim 1-500 MW
CERN	200 MW
Germany total demand	35-80 GW

If all energy is electrified in 2050 and energy consumption equalises between nations, the average electricity consumption of the world would be around 12 TW.

Suppose half is met with wind (capacity factor 33.3%) and half is met with solar PV (capacity factor 16.6%). [Capacity factor = average generation / capacity.] How much wind and solar capacity does the world need (assuming perfect lossless storage)?

If all energy is electrified in 2050 and energy consumption equalises between nations, the average electricity consumption of the world would be around 12 TW.

Suppose half is met with wind (capacity factor 33.3%) and half is met with solar PV (capacity factor 16.6%). [Capacity factor = average generation / capacity.] How much wind and solar capacity does the world need (assuming perfect lossless storage)?

Wind: 6 TW / 0.333 = 18 TW (around 900 GW was installed by 2022)

Solar: 6 TW / 0.166 = 36 TW (around 1050 GW was installed by 2022)

If installed wind density on average is $10~\text{MW/km}^2$ and solar is $72~\text{MW/km}^2$, what percentage of world land (149 million km²) is taken with each?

If installed wind density on average is $10~\text{MW/km}^2$ and solar is $72~\text{MW/km}^2$, what percentage of world land (149 million km²) is taken with each?

Wind: 18 TW/(10 MW/km²) = 1.8 million km² (around 1.2% of total land = area of Indonesia)

Solar: 36 TW/(72 MW/km 2) = 0.5 million km 2 (around 0.3% of total land = area of Spain)

Nota Bene:

- Wind doesn't interfere with other land uses like agriculture; can also be built offshore
- 10 MW/km² is a **local** maximum installation density for wind, but to allow wind replenishment over large areas 2 MW/km² is suitable as a **wide-area** limit
- Solar can be rooftop or combined with agriculture = agrivoltaics

Units of energy: Watt-hour

In the electricity sector, energy is usually measured in 'Watt-hours', Wh.

1 kWh = power consumption of 1 kW for one hour

E.g. a 10 W lightbulb left on for two hours will consume

10 W * 2 h = 20 Wh

It is easy to convert this back to the SI unit for energy, Joules:

1 kWh = (1000 W) * (1 h) = (1000 J/s)*(3600 s) = 3.6 MJ

Yearly energy to power

Germany consumes around 600 TWh per year, written 600 TWh/a.

What is the $\ensuremath{\textit{average}}$ power consumption in GW?

Yearly energy to power

Germany consumes around 600 TWh per year, written 600 TWh/a.

What is the average power consumption in GW?

600 TWh/a =
$$\frac{(600 \text{ TW}) * (1 \text{ h})}{(365 * 24 \text{ h})}$$

= $\frac{600}{8760}$ TW
= 68.5 GW

Tables for converting units

multiply by:	GJ	Toe	MBtu	MWh
GJ	1	0.024	0.948	0.278
Toe	41.868	1	39.683	11.630
MBtu	1.055	0.025	1	0.293
MWh	3.600	0.086	3.412	1

Units used in the United States:

- ullet British thermal unit (Btu), 1 million Btu = MBtu (often written MMBtu) = 0.293 MWh
- Quad = 1e15 Btu = 293 TWh

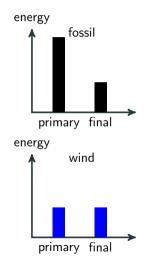
Energy conversion efficiency

Efficiency of an energy conversion device (e.g. power plant, vehicle engine):

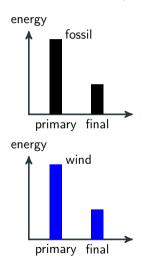
Efficiency,
$$\eta = \frac{\text{Useful energy output}}{\text{Energy input}}$$

Example: How much much natural gas is required for generating 100 MWh of electricity in a gas power plant with an efficiency of 50%?

Measuring primary energy of renewables


How to value primary energy of carriers which do not have a calorific value, e.g. wind, solar PV, hydroelectricity?

- Fictive Efficiency Principle: (also known as 'Physical Energy Accounting Method' or 'Direct Equivalent Method') (most common: used by IEA, OECD, Eurostat, IPCC) assume there is a 1-to-1 correspondence between primary energy and electricity for wind, solar, hydro (i.e. 100% conversion efficiency)
- Substitution Principle: (also know as the 'Input-Equivalent Method') (used by BP) assume the conversion efficiency from primary energy to electricity is the same as in a thermal (fossil or nuclear) powerplant (e.g. 35-45%)
- Efficiency Principle: actual efficiency of respective technology (hydro 80-90% gravitational potential energy of water to electricity, wind 30-55% kinetic energy of air to electricity, solar 10-25% radiation to electricity)


Fictive Efficiency vs Substitution Principle for Electricity Generation

Fictive Efficiency Principle

Substitution Principle

Beware: primary energy can underestimate renewables share

Suppose 50% of electricity is provided by wind and solar, the rest by fossil plants with 33% efficiency.

What is the fraction of renewables in primary energy for electricity:

- 1. Using the Fictive Efficiency Principle
- 2. Using the Substitution Principle

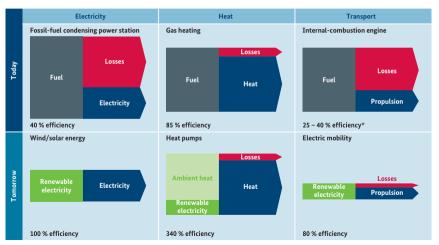
Beware: primary energy can underestimate renewables share

Suppose 50% of electricity is provided by wind and solar, the rest by fossil plants with 33% efficiency.

What is the fraction of renewables in primary energy for electricity:

- 1. Using the Fictive Efficiency Principle
- 2. Using the Substitution Principle

1.
$$\frac{50}{50+50/0.33}\% = \frac{50}{50+150}\% = 25\%$$


2. 50% (since we assume renewables need as much primary energy for each unit of electricity as a thermal plant)

Bad faith actors will often present renewable shares in terms of primary energy to make it look small.

Primary and final energy change with electrification

Primary energy in grey and green; useful energy in blue. NB: Also in **industry**, **electrification** of process heat can be more efficient since the heat can be focused better than e.g. burning gas.

^{*} The efficiency of internal-combustion engines in other applications (e.g. maritime transport, engine-driven power plants) can exceed 50 %.

Primary and final energy change with renewables and electrification

Switching from thermal power plants to wind, solar and hydro leads to an **automatic decline** in **primary energy** using the Fictive Efficiency Principle, since thermal losses are no longer counted.

With electrification and efficiency, **final energy also declines** (compare gasoline required for a car versus electricity need; similarly natural gas for boiler versus electricity for a heat pump).

Both primary and final energy would decline! Primary by \sim 50%, final by \sim 33%.

Expect roughly a **doubling electricity demand** (assuming widespread electrification of end demands, indirect electrification with H2 and efficiency measures).

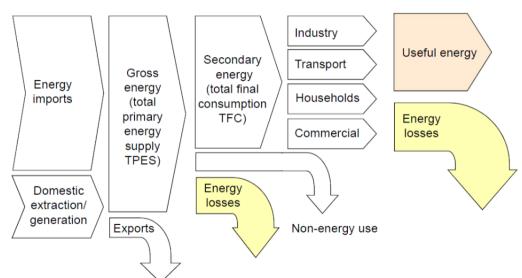
Electricity would become the dominant final energy, primary energy becomes less relevant.

Most important metrics become: fraction of electricity from non-emitting sources; efficiency of electricity meeting energy services.

Energy Balances

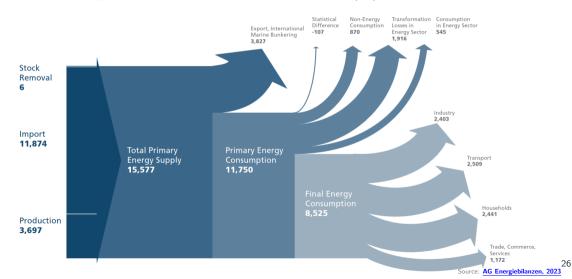
Energy Balances

Energy is always **conserved** as it flows through the energy system.

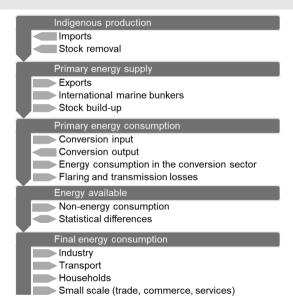

Energy balances tabulate this energy conservation at each step of conversion from primary energy supply to primary energy consumption to final energy to energy services for consumers.

At each interface, inputs and outputs balance.

Principles of Energy Flow



Energy Flow In Germany



Example: energy balance for Germany in 2022 in Petajoule (PJ)

Energy Balance Structure (AGEB)

Simplified Energy Balance for EU28 in 2016

ktoe	EU28	2016	Total all products	Solid fuels	Oil (total)	Gas	Total Renewables	Wastes (non ren.)	Nuclear heat	Derived heat	Electricity
Primary production		8 100100	755,389	131.850	74,354	107.238	210,708	14.537	216.703		
 Primary production rec 	eipt	8 100110	9,397		9,397						
From other sources (R)		B_100200	4,522	404	3.818	300					
+ Recycled products		8_100210	1.044		1.044						
+ Imports		B_100300	1,483,219	134,902	941.564	357,102	16.395	385		6	32.865
+ Stock changes		B_100400	21,263	11,807	3,423	5,944	89	0			
- Exports		8_100500	579,508	38,239	411,746	87,613	10,574	29		5	31,301
- Bunkers		8_100800	44,152		44,151	1		-			
- Direct use		B 100112	10,559		10.559						
Gross inland consumpt	ion	B 100900	1,640,615	240,724	567,142	382,969	216,618	14,893	216,703	1	1,564
Transformation input		B 101000	1,294,958	224,492	654,689	125,132	61,875	11,027	216,703	768	272
+ Conventional Thermal	Power Stations	B 101001	358,478	165,433	12,820	114,576	54,977	9,905		768	
+ Nuclear Power Station	5	B 101002	216,703						216,703		
+ Coke-ovens		B 101004	36,597	36,215	355	27					
+ Blast-fumaces		B 101006	12,918	12,918							
Gas works		B_101007	695	674		21					
+ Refineries		B_101008	640,308		640,308						
District heating plants		B_101009	21,015	3,544	963	8.654	6.459	1,122			272
Patent fuel plants		B_101010	219	142	77						
BKB / PB Plants		8_101011	4,385	4,385							
+ Coal Liquefaction Plan	nts	8_101012	901	901							
 For Blended Natural G 	as	8_101013	391		162		230				
 Charcoal production pl 	lants (transformation)	8 101015	209				209				
+ Gas-to-Liquids (GTL) F		B 101016									
 Non-specified Transfor 	mation Input	B 101020	2,138	279	4	1.855					
Transformation output		B 101100	963,032	31,378	640,125	20,223	62			59,192	212,054
+ Conventional Thermal	Power Stations	B 101101	181,172							41,319	139,854
 Nuclear power stations 		B_101102	72,303							103	72,200
+ Coke-ovens		B 101104	34,193	27,365		6,828					
+ Blast-furnaces		B_101106	12,918			12,918					
+ Gas works		B_101107	477			477					
+ Refineries		B_101108	640,125		640,125						
+ Patent Fuel Plants		B 101110	173	173							
BKB / PB Plants		8 101111	3,840	3,840							
 Charcoal production pl 	lants	8 101115	62				62				
 District Heating Plants 		B 101109	17,770							17,770	
Exchanges and transfer	rs, returns	B 101200	2,969		2,969		-65,240				65,240
Consumption of the ene	rgy branch	B 101300	80,128	636	33,402	19,028	654	87		4,913	21,408
Distribution losses		8 101400	26,372	35	53	3,093	24			5,554	
Available for Final Cons	umption	8 101500	1,205,158	46,938	522,093	255,939	88,886	3,780		47,957	239,565
Final non-energy consu	mption	B 101600	97,773	1,763	82,480	13,530					
Final energy consumpti	on	B 101700	1,107,818	45,338	437,131	245,284	88,949	3,780		47,932	239,409
+ Industry		8_101800	276,823	33,774	27,513	86,242	22,542	3,524		16,112	
+ Transport		8_101900	367,272	12	344,648	3,284	13,840				5,488
+ Other Sectors		8_102000	463,723	11,552	64,969	155,758	52,567	256		31,820	
+ Services		8_102035	150,043	923	15,668	46,281	4,889	255		9,274	
+ Residential		B_102010	284,832	9,507	33,139	105,175				22,148	
+ Agriculture / Forestr	у	8_102030	24,079	1,082	12,992	3,426		1		252	
+ Fishing		B 102020	1,426		1,236	2	46				142

- Gross inland consumption =
 Primary energy consumption
 = Production + Imports +
 Stock changes Exports Bunkers
- Bunkers is e.g. marine fuel stored at ports
- Around 330 Mtoe lost in transformation
- Final consumption = Final non-energy + Final energy consumption

Questions

- What is the average electrical efficiency of conventional power stations in the EU?
- What is the average electrical efficiency of nuclear power stations in the EU?
- What fraction of industry/transport/residential final energy consumption is electricity?
- What is non-energy consumption?

Moving Beyond Energy Balances: JRC IDEES Database

Includes more granular estimates of useful energy, efficiency, CO_2 emissions, breakdown e.g. industry by process.

From Joint Research Centre (JRC) of the European Commission.

https://data.jrc.ec.europa.eu/dataset/jrc-10110-10001

"The 'Integrated Database of the European Energy Sector' (JRC-IDEES) is a one-stop data-box that incorporates in a single database all information necessary for a deep understanding of the dynamics of the European energy system, so as to better analyse the past and to create a robust basis for future policy assessments. JRC-IDEES offers a consistent set of disaggregated energy-economy-environment data, compliant with the EUROSTAT energy balances, as well as widely acknowledged data on existing technologies. It provides a plausible decomposition of energy consumption, allocating it to specific processes and end-uses."

JRC IDEES: Residential energy appliances

EU28 - Residential / specific electric uses	2010	2011	2012	2013	2014	2015
Final energy consumption (ktoe)	39,989.2	39.993.1	39.731.9	39,096,5	38,404.6	37.433.
White appliances	15,205.1	15,357.2	15,569.5	15,703.9	15,963.3	16,147.
Refrigerators and freezers	8.168.9	8,233.9	8,318,9	8,346.1	8,493.3	8,591.
Washing machine	3,042.6	3,059.4	3,091.5	3,101.5	3,125.0	3,146.
Clothes dryer	2,173.8	2,210.6	2,257.8	2,309.7	2,351.5	2,386.
Dishwasher	1,819.7	1,853.4	1,901.4	1,946.6	1,993.6	2,023.
Brown appliances	13,675.5	14,040.8	14,315.5	14,447.2	14,438.4	14,282.
TV and multimedia	10,960.1	11,240.8	11,423.7	11,489.8	11,451.5	11,304.
ICT equipment	2,715.5	2,800.0	2,891.8	2,957.4	2,986.9	2,977.
Lighting and other electricity uses	11,108.5	10,595.0	9,846.8	8,945.3	8,002.9	7,003.
Lighting	7,303.9	6,706.6	5,874.6	4,909.8	3,908.0	2,871.
Other appliances (vacuum cleaners, irons etc.)	3,804.6	3,888.5	3,972.2	4,035.5	4,094.9	4,131
Total MW installed (in average operating mode)	1,793,429.5	1,803,111.1	1,808,318.2	1,798,855.9	1,785,602.2	1,760,140
White appliances	198,249.6	201,660.3	204,205.7	205,003.0	206,377.1	206,322.
Refrigerators and freezers	10,843.3	10,929.5	11,042.4	11,078.6	11,273.9	11,404.
Washing machine	46,970.9	46,636.3	46,501.5	46,097.7	46,013.4	45,439.
Clothes dryer	103,001.4	106,198.2	108,150.6	108,822.7	109,478.3	109,645.
Dishwasher	37,434.0	37,896.3	38,511.3	39,004.0	39,611.6	39,832.
Brown appliances	113,857.3	116,148.5	118,037.1	118,656.8	118,007.3	116,001.
TV and multimedia	71,905.5	73,160.4	73,861.1	73,760.4	72,967.2	71,455.
ICT equipment	41,951.7	42,988.1	44,176.0	44,896.4	45,040.0	44,546.
Lighting and other electricity uses	1,481,322.7	1,485,302.2	1,486,075.4	1,475,196.2	1,461,217.8	1,437,816.
Lighting	161,113.5	147,979.3	129,850.0	108,601.0	86,429.1	63,403.
Other appliances (vacuum cleaners, irons etc.)	1,320,209.2	1,337,322.9	1,356,225.3	1,366,595.2	1,374,788.7	1,374,412.
Total number of appliances						
White appliances						
Refrigerators and freezers	281,386,019	291,932,612	304,497,583	316,257,646	329,569,096	342,024,03
Washing machine	183,768,546	190,087,533	199,158,165	209,279,726	219,587,016	232,061,61
Clothes dryer	64,612,619	68,086,186	71,170,754	73,924,700	77,176,183	81,093,40

- NB: Peak electricity consumption in Europe is around 500 GW.
- If all 1760 GW of appliances came on simultaneously, system would be overwhelmed.
- What do you notice about the ratio of total energy consumption to installed power?

JRC IDEES: Residential heating efficiency

EU28 - System efficiency indicator of total stock	2010	2011	2012	2013	2014	2015
Ratio of energy service to energy consumption	0.669	0.673	0.681	0.690	0.696	0.705
Space heating	0.675	0.679	0.686	0.696	0.702	0.712
Solids	0.512	0.513	0.514	0.516	0.517	0.519
Liquified petroleum gas (LPG)	0.641	0.647	0.654	0.662	0.666	0.672
Gas/Diesel oil incl. biofuels (GDO)	0.652	0.656	0.665	0.675	0.682	0.685
Gases incl. biogas	0.681	0.684	0.691	0.697	0.702	0.707
Biomass and wastes	0.542	0.545	0.550	0.556	0.559	0.564
Geothermal energy	0.820	0.830	0.837	0.840	0.848	0.851
Derived heat	0.805	0.808	0.810	0.822	0.824	0.831
Advanced electric heating	1.679	1.815	1.946	2.116	2.240	2.392
Conventional electric heating	0.787	0.791	0.798	0.807	0.808	0.815
Electricity in circulation	1.000	1.000	1.000	1.000	1.000	1.000
Space cooling	2.323	2.463	2.611	2.746	2.881	3.009
Air conditioning	2.323	2.463	2.611	2.746	2.881	3.009
Water heating	0.626	0.629	0.632	0.636	0.638	0.643
Solids	0.448	0.450	0.452	0.454	0.455	0.456
Liquified petroleum gas (LPG)	0.585	0.588	0.592	0.596	0.598	0.599
Gas/Diesel oil incl. biofuels (GDO)	0.570	0.572	0.577	0.580	0.584	0.586
Gases incl. biogas	0.589	0.591	0.595	0.598	0.600	0.604
Biomass and wastes	0.485	0.488	0.491	0.494	0.497	0.500
Geothermal energy						
Derived heat	0.847	0.850	0.850	0.855	0.858	0.860
Electricity	0.744	0.747	0.752	0.757	0.761	0.764
Solar	1.000	1.000	1.000	1.000	1.000	1.000
Cooking	0.615	0.620	0.624	0.628	0.632	0.638
Solids	0.344	0.345	0.346	0.347	0.348	0.349
Liquified petroleum gas (LPG)	0.461	0.463	0.466	0.469	0.470	0.472
Gases incl. biogas	0.505	0.508	0.510	0.513	0.515	0.518
Biomass and wastes	0.337	0.338	0.339	0.340	0.340	0.342
Electricity	0.839	0.841	0.843	0.846	0.848	0.850

- Ratio of final energy to actual heating for space/water/cooking.
- Which fuel source is most efficient?
- Why is 'air conditioning' efficiency greater than one?
- Why is 'advanced electric heating' efficiency greater than one?