T. Brown M. Schäfer

Exercise 1: Feed-In Tariffs and Investment in Renewable Generators

- 1. Average output: 35.67%
- 2. Annual revenue: $0.3567 \times 200 \text{ MW} \times \text{€}70/\text{MWh} \times 8760 \text{ h} = \text{€}43.7 \text{ million}$
- 3. Annual payment for the loan: 20000 kW× €1100/kW×annuity = €23.3 million
- 4. Yearly profit: revenue costs = ≤ 20.4 million
- 5. Annual payment with interest rate 20%: €44.2 million
- 6. Rate of return (20% own capital, interest rate 10%): investment €176 million, annuity €18.66 million, rate of return 10.5%

Exercise 2: Utilization Factors, Variable and Fixed Costs

Solve
$$10Q + 15 = 25Q + 5$$
, i.e. $Q = 2/3$

Exercise 3: Feasible Network Transactions

PTDF matrix:

$$H = \begin{array}{ccc} 1 \to 2 \\ 1 \to 3 \\ 2 \to 3 \end{array} \left(\begin{array}{ccc} 0 & -\frac{4}{5} & -\frac{2}{5} \\ 0 & -\frac{1}{5} & -\frac{3}{5} \\ 0 & \frac{1}{5} & -\frac{2}{5} \end{array} \right)$$

Set 1 (all in MW): $Z_1 = -100$, $Z_2 = 200$, $Z_3 = -100$

Set 2 (all in MW): $Z_1 = 400$, $Z_2 = 400$, $Z_3 = -800$

Set 3 (all in MW): $Z_1 = -100$, $Z_3 = -300$, $Z_3 = 400$

	$F_{1\to 2} \text{ (MW)}$	$F_{1\to 3} \text{ (MW)}$	$F_{2\to 3} \text{ (MW)}$	Feasible?
Set 1	-120	20	80	Yes
Set 2	0	400	400	No
Set 3	80	-180	-220	Yes

3. Exercise Sheet Solutions 23.05.2016

T. Brown M. Schäfer

Exercise 4: Two-bus power system

- 1. Price λ_i , production Q_i^S , flow F.
 - (a) $\lambda_A=80$ \in /MWh, $\lambda_B=35$ \in /MWh, $Q_A^S=2000$ MW, $Q_B^S=1000$ MW, F=0
 - (b) $\lambda_A=53$ €/MWh, $\lambda_B=53$ €/MWh, $Q_A^S=1100$ MW, $Q_B^S=1900$ MW, F=-900 MW
 - (c) $\lambda_A=65$ €/MWh, $\lambda_B=65$ €/MWh, $Q_A^S=1500$ MW, $Q_B^S=1500$ MW, F=-500 MW
 - (d) $\lambda_A = 57 \in /MWh$, $\lambda_B = 57 \in /MWh$, $Q_A^S = 900 MW$, $Q_B^S = 2100 MW$, F = -1100 MW
 - (e) $\lambda_A=62$ €/MWh, $\lambda_B=47$ €/MWh, $Q_A^S=1400$ MW, $Q_B^S=1600$ MW, F=-600 MW
- 2. Generator revenues R_i , generator costs C_i , generator profits P_i , consumer payments E_i . Find the generator profits by substracting the costs from the revenue. Costs are given by integrating the marginal cost, i.e. $C_A = 20Q + 0.015Q^2$ and $C_B = 15Q + 0.01Q^2$. The generator

<u></u>		1_			
Case	a	b	С	d	е
$E_A \in$	160000	106000	130000	114000	124000
$E_B \ (\leqslant)$	35000	53000	65000	57000	47000
$R_A \in$	160000	58300	97500	51300	86800
$R_B \ (\leqslant)$	35000	100700	97500	119700	75200
$C_A \ (\leqslant)$	100000	40150	63750	30150	57400
$C_B \in$	25000	64600	45000	75600	49600
P_A (\in)	60000	18150	33750	21150	29400
$P_B \ (\leqslant)$	10000	36100	52500	44100	25600

at B and the consumers at A benefit from the line (price increases at B, decreases at B)

3. Congestion surplus 9000 €:

$$(E_A + E_B) - (R_A + R_B) = |F| \times (\lambda_A - \lambda_B)$$

Electricity Markets

T. Brown M. Schäfer 3. Exercise Sheet Solutions 23.05.2016

Congestion surplus is equal to zero when the flow F = 0, or when it is equal to the unconstrained value F = -900 MW (then $\lambda_A = \lambda_B$).

Exercise 5: Another three-bus system

This question was moved to Sheet 4 and the solution can be found there.