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Short-run efficient operation of elec-
tricity markets




Consumers and generators

Consumers: Their utility or value function U(Q) in €/h is a measure of
their benefit for a given consumption rate Q. For a given price \ they
adjust their consumption rate @ such that their net surplus is maximised:

mgx[U(Q) - AQ]

Generators: A generator has a cost or supply function C(Q) in €/h,
which gives the costs (of fuel, etc.) for a given rate of electricity
generation @ MW. If the market price is A €/MWh, the revenue is AQ
and the generator should adjust their generation rate @ to maximise their
net generation surplus, i.e. their profit:

max [AQ — C(Q)]



Setting the quantity and price

Total welfare (consumer and generator surplus) is maximised if the total
quantity is set where the marginal cost and marginal utility curves meet.

If the price is also set from this point, then the individual optimal actions
of each actor will achieve this result in a perfect decentralised market.
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The result of optimisation

This is the result of maximising the total economic welfare, the sum of
the consumer and the producer surplus for consumers with consumption
QE and generators generating with rate Q?:

max Ui(QB) — G(Q7)
R SCIR I
subject to the supply equalling the demand in the balance constraint:

Y QRF-> Q=0 < A

and any other constraints (e.g. limits on generator capacity, etc.).

Market price A is the shadow price of the balance constraint, i.e. the cost
of supply an extra increment 1 MW, or reduce generation by an
increment of 1 MW.



Limits of this model

Consumers: How do they participate in the market? Role of retail?
Demand side management? " Prosumers”?

Generators: Ramp-rates? Startup costs?

Markets: How to balance supply and demand at all times? Time
structure of different markets? Managing risk? Market coupling? Role of
the market operator?

Long-term decisions: Investment decisions of consumers and
generators? Regulation?

Market power

Transmission: Network constraints? Role of the system operator?
Transmission expansion?



General  constrained  optimisation
theory:  Lagrangians and Karush-
Kuhn-Tucker conditions




Optimisation problem

We have an objective function f : Rk — R

max f(x)

[x = (x1,...xx)] subject to some constraints within R¥:
gi(x)=c¢ < A i=1,...n
hJ(X)SdJ s Hj j:].,...m

Ai and p; are the KKT ‘Lagrange’ multipliers we introduce for each

constraint equation; it measures the change in the objective value of the
optimal solution obtained by relaxing the constraint (shadow price).



KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions that
an optimal solution x*, u*, A* always satisfies (up to some regularity
conditions):

1. Stationarity: For I =1,...k

.08
6x, Z aX/ Z J aX/

2. Primal feasibility:

3. Dual feasibility: uj’-‘ >0

4. Complementary slackness: y;(h;(x*) —d;) =0



Complementarity slackness for inequality constraints

We have for each inequality constraint
pj =0
pj (hi(x*) —dj) =0
So either the inequality constraint is binding
hi(x*) = dj
and we have p; > 0.
Or the inequality constraint is NOT binding
hi(x) < d;
and we therefore MUST have uf = 0.

If the inequality constraint is non-binding, we can remove it from the
optimisation problem, since it has no effect on the optimal solution.



Example: Two generators, fixed demand

Suppose marginal costs ¢; = 10 €/MWh, ¢, = 30 €/MWh, fixed
demand Q5, generation limits @1 =300 MW, (:)2 = 400 MW.

What is the optimal power plant dispatch, i.e. what values of Q1, Q>
maximise efficiency?



Example: Two generators with fixed demand

Demand QF = 200 MW. The optimal dispatch is Qf = 200 MW < @1
and Q; =0 < Q..
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Example: Two generators with fixed demand

Demand Q& = 500 MW.
The optimal dispatch is @} = 300 MW = @1 and @} = 200 MW < &,.
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KKT: Application to 2-generator example with fixed

demand

Our optimisation variables are {x} = {Q1, Q.} with objective function

max f(Q1, Q) =—c- 1 — - Q

1,2

subject to one equality and four inequality constraints:
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KKT: Application to 2-generator example with fixed

demand

Stationarity:
7C1+>\*7ﬁ1<+l_1;:0
o+ A —jiz+p;, =0

Primal feasibility:
Q- Q- =0
0<Q<qf viel1,2

Dual feasibility and complementary slackness:
if >0 Viel,2
/_t;‘ >0 Viel,?2
i (Q —Q)=0 Viel,2
p(=Q)=0 VIiel,?2



KKT: Application to the example

Stationarity:
—10 €/MWh + X\* — 7 +p; =0
—30 €/MWh + X" — i3 + p; =0

Primal feasibility:
@P-Qi - =0
0 < Qf <300 MW
0 < Q5 <400 MW

Dual feasibility and complementary slackness:
i1 20, >0, 7320, pu3 >0
A1 (QF —300 MW) =0, f5(Q; — 400 MW) =0
p(=Qr) =0, py(=@;) =0



Application to the example, Q€ = 200 MW

Stationarity shows that uj # 0 for some j.
From QB < Q; and QB < @, it follows that i = 0 and ji5 = 0.

We observe that from I # 0 it follows Qf =0, and from By %0 it
follows Q5 = 0. From the primal feasibility constraint it follows that
either Qf > 0 or Q5 >, so either p_q =0or /_L; = (0,

If we substract the second stationarity equation from the first one, we
obtain with fif = i35 =0

20 €/MWh + i — iz =0

From the dual feasibility it follows that 7 = 0 and p7 = 20 €/MWh.
Using the first stationarity equation we get A\* = 10 €/MWh.



Application to the example, Q€ = 500 MW

Stationarity shows that pj # 0 for some /.

From the primal feasibility constraint it follows that both Q; > 0 and
@3 > 0, so both HI =0 and ,l_j,; =0.

From fi7 # 0 it follows Q;f = 300 MW, from ji5 # 0 it follows
@ =400 MW. Due to primal feasibility thus either i =0 or 13 = 0.

If we substract the second stationarity equation from the first one, we
obtain with ;_L’l‘ = /_1; =0

20 €/MWh + i — i} =0

From the primal feasibility it follows that i = 0 and 7 = 20 €/MWh.
Using the first stationarity equation we get A\* = 30 €/MWh.



Example: N generators, fixed demand

Suppose marginal costs ¢; and generation limits Q), and assume a total
fixed demand QB.

What is the optimal power plant dispatch, i.e. what values of Q,
maximise efficiency?
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KKT: Application to N generators, fixed demand

Our optimisation variables are {x} = {Q1, ..., Qu} with objective
function

N
max f(Ql,...,QN):—ZCrQ/
=1

1yeeey WN

subject to one equality and 2/ inequality constraints:
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KKT: Application to N generators, fixed demand

Stationarity:

—C/+/\*—,1_L/—|-,l_tl:0 viel,....,N
Primal feasibility:
Q-> @ =0
I
0<Q<qr Viel,...,N

Dual feasibility and complementary slackness:
iy >0 viel,...,
,L_LTZO viel,...,
AQ - Q)=0  Viel,...,
p(=Q)=0 viel,...,
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A remark on the parameter A

In the KKT formalism for efficient short term market operation, the
parameter \ gives the relative change of the objective function for the
optimal solution, when we relax the balancing condition

2.7 -> @ =o0.
/ /

The parameter \* as the shadow price of this constraint is interpreted as
the market price (competitive price).

There is a little ambiguity about the marginal cost, when the supply and
demand curves don't intersect, and the constraints determine the value
A"

23



A remark on the parameter A

Consider a consumer with utility function uQB, and a generator with cost
function cQ®, and assume u > c¢. Furthermore assume that the
consumption is limited by @&, and generation is limited by Q5.

The objective function is
f(Qs, Qs) = uQpe — cQs

with the balancing condition
Qe —Qs=0.

The constraints are

24



A remark on the parameter A

Running KKT on this problem gives the following result:

Qs > Qg: Optimal solution is Q% = Q5 = Qp, with the competitive

A* = ¢. Relaxing the balancing constraint would allow the generator to
reduce the generation, and thus the relative cost by ¢, while the demand
is still Qp. Lowering the demand would not increase the objective
function, while increasing it is not possible due to the constraint.

OB > Osi Optimal solution is Qg = Qf = @5, with the competitive
price A* = u. Relaxing the balancing constraint would allow the
consumer to increase the consumption, and thus the relative utility by v,
while the generation is still Qs. Increasing the generation would not
increase the objective function, while reducing it gives a smaller increase
in the objective function than increasing the demand.
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A remark on the parameter A

But does this give the right competitive price? Interpreting the supply
and demand curves as aggregates, we can understand the situation as
follows:

In the first case a supplier could raise the price above its marginal cost c.
But since Qs > Qs, another generator would immediately jump in and
fulfill the demand at the price ¢, so this is the competitive price.

Would the competitive price be less than u in the second case, due to
Qs < Q5 there always will be a consumer willing to pay u to satisfy his
demand, so this is the competitive price.

For a discussion of this point see Chapter 1.6 in the book Power System
Economics by Steven Stoft.
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Transmission and distribution net-
works




Transmission and distribution networks

Electricity usually is not consumed where it is produced, so it has to be
transported via transmission and distribution networks.

Transmission networks: Transport large volumes of electric power over

relatively long distances.

Distribution networks: Take power from the transmission network and
deliver it to a large number of end points in a certain geographic area.
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Transmission and distribution networks

Das deutsche Stromnetz netebenen und stromfluss
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European Transmission Grid

entso@

Source: ENTSO-E
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Transmission and distribution networks in Germany

Das deutsche Strom-Verteilernetz ist
rund 1,7 Millionen Kilometer lang

r annungsnet Hochspannungsnetz Hochstspannungsnetz

Niederspannungsnetz g
ca. 1.100.000 Kilometer ca. 510.000 Kilometer ca. 95.000 Kilometer ca. 35.000 Kilometer
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Source: BMWi
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Transmission and distribution networks in Germany

Sector

Leading Companies

Market Share

Total Number
of Providers

Transmission

Amprion

Transnet BW (ENBW)
TenneT

50Hertz Transmission

100% Combined

The big 4 distribution
EnBW companies own and approximately 890*
o) E.ON operate a significant DSOs, about 700 of
Distribution RWE portion of the distribu- which are municipally
Vattenfall tion system, though the | owned Stadtwerke
exact level is not clear.
ENBW 56% installed
Total E.ON capacity** (June 2014) ?r:loetri;(é?u%i%m(ijnudciif
Generation RWE ~59 % of electricity Asle) 4
Vattenfall generated (2012).%**
Retail EnOBI\YV A . )
Suppliers RWE of total electricity over 900 suppliers
Pre
Vattenfall offtake (TWh).

Source

Agora Energiewe

nde

RAP
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TSOs in Germany

— 5 ohertz

Source: Wikipedia (Francis McLloyd)
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Transmission grid near Frankfurt
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Tre
Bilrstadt, Hopfingen
Pal a

Source: ENTSO-E
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Frankfurts DSO

il der NRM i Rhein-Main GmbH

NRM Netzdienste Rhein-Main (subsidiary company of Mainova)

Source! NRM Netzdienste Rhein-Main
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Power grids and electricity markets

The (physical) balancing of supply and demand has to respect the
network constraints of the system. These constraints have to be
implemented by the system operator, but to some extent can also be
included into the market design.

Transmission and distribution networks are (almost?) natural monopolies,
which leads to substantial market power. These networks are typically
state owned, cooperatives or heavily regulated (many interesting
problems with respect to incentives, tariffs, etc.).

Network expansion is part of the long-term efficient operation of the
system.
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Copyright

Unless otherwise stated the graphics and text is Copyright (© Tom Brown
and Mirko Schafer, 2016.

We hope the graphics borrowed from others have been attributed
correctly; if not, drop a line to the authors and we will correct this.

The source IATEX, self-made graphics and Python code used to generate
the self-made graphics are available on the course website:

http://fias.uni-frankfurt.de/~brown/courses/electricity_
markets/

The graphics and text for which no other attribution are given are
licensed under a Creative Commons Attribution-ShareAlike 4.0
International License.

©@®O

37


http://fias.uni-frankfurt.de/~brown/courses/electricity_markets/
http://fias.uni-frankfurt.de/~brown/courses/electricity_markets/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Short-run efficient operation of electricity markets
	General constrained optimisation theory: Lagrangians and Karush-Kuhn-Tucker conditions
	Transmission and distribution networks

