
Mathematics of Networks

14.03.2016

1 / 42



Definition of a network

Our definition (Newman): A network (graph) is a collection of
vertices (nodes) joined by edges (links).

More precise definition (Bollobàs): A graph G is an ordered pair of
disjoint sets (V ,E ) such that E (the edges) is a subset of the set
V (2) of unordered pairs of V (the vertices).
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Edge list representation

I Vertices:
1,2,3,4,5,6

I Edges:
(1,2), (1,3), (1,6),
(2,3), (3,4), (4,5),
(4,6)

Definition from graph
theory:

I n = 6 vertices: order
of the graph

I m = 7 edges: size of
the graph
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Adjacency matrix A

Aij =

{
1 if there is an edge between vertices i and j

0 otherwise.

A =



0 1 1 0 0 1
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 0
1 0 0 1 0 0


I Diagonal elements are

zero.

I Symmetric matrix.
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Multigraph

There can be more than one edge between a pair of vertices.

A =



0 1 1 0 0 3
1 0 2 0 0 0
1 2 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 0
3 0 0 1 0 0
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Self-edges
There can be self-edges (also called self-loops).

A =



0 1 1 0 0 3
1 0 1 0 0 0
1 1 2 1 0 0
0 0 1 2 1 1
0 0 0 1 0 0
3 0 0 1 0 0



I Diagonal elements can be non-zero:
Definition: Aii = 2 for one self-edge.
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Weighted networks

Weight or strength assigned to each edge.

A =



0 1.4 0.4 0 0 0.8
1.4 0 1.2 0 0 0
0.4 1.2 0 0.2 0 0
0 0 0.2 0 0.2 0
0 0 0 0.2 0 0

0.8 0 0 0.4 0 0



Weights can be both positive or negative.
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Directed Networks (Digraphs)

Edge is pointing from one vertex to another (directed edge).

Aij =

{
1 if there is an edge from j to i

0 otherwise.

A =



0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 1 0 0



In general the adjacency matrix of a directed network is asymetric.
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Degree
I Degree ki of vertex i : Number of edges connected to i .
I Average degree of the network: 〈k〉.

In terms of the adjacency matrix A:

ki =
n∑

j=1

Aij , 〈k〉 =
1

n

∑
i

ki =
1

n

n∑
i=1

n∑
j=1

Aij .

k5 = 1

k2 = k6 = 2

k1 = k3 = k4 = 3

〈k〉 = 2.33
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Examples

(from the free textbook ”Network Science”)
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Degree

With n the number of vertices in the graph, and m the number of
edges, it holds:

2m =
n∑

i=1

ki =
n∑

i=1

n∑
j=1

Aij .

For the average degree 〈k〉 of the graph this yields

〈k〉 =
1

n

n∑
i=1

ki =
1

n

n∑
i=1

n∑
j=1

Aij =
2m

n
.
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Density / connectance

Maximum possible number of edges in a simple graph with n
vertices:

1

2
n(n − 1) .

Density or connectance of a graph: Fraction of maximum possible
number of edges which are present in a given graph:

ρ =
m

1
2n(n − 1)

=
2m

n(n − 1)
=
〈k〉
n − 1

.
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Degree distribution

Number of vertices with degree k in a graph:nk
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Degree distribution
Fraction of vertices in a graph that have degree k :

pk =
nk
n
.
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Degree distribution

Hubs: well-connected vertices
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Average degree from the degree distribution

Degree distribution tells important information about a network,
but doesn’t contain the complete information.

The average degree of a graph can be easily calculated from the
degree distribution:

〈k〉 =
1

n

n∑
i=1

ki =
1

n

kmax∑
k=0

nkk =
kmax∑
k=0

kpk .
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Directed networks: in-degree, out-degree

Number of vertices with k ingoing / outgoing edges.

k ini =
n∑

j=1

Aij , kouti =
n∑

j=1

Aji
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Bipartite networks

Often a system can be represented as a network consisting of two
kinds of vertices, with edges only between vertices of different
types (group membership). Examples:

I Film actors: Actors, group: Cast of a film

I Coauthorship: Authors, group: Authors of an article

I Rail connections: Train stations, group: Route

I Brazilian soccer players: Players, group: Clubs

I Blinkist: Users, group: Readers of a book
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Bipartite networks: Adjacency matrix

A =



0 0 0 1 1 1 0
0 0 0 0 1 0 0
0 0 0 0 1 1 1
1 0 0 0 0 0 0
1 1 1 0 0 0 0
1 0 1 0 0 0 0
0 0 1 0 0 0 0
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Bipartite networks: Incidence matrix B
Vertices of type 1:i = 1, 2, . . . , n1 (often groups)
Vertices of type 2:j = 1, 2, . . . , n2 (often people)

Bij =

{
1 if there is an edge between vertices i and j

0 otherwise.

B =

1 1 1 0
0 1 0 0
0 1 1 1


I n1 × n2 matrix

I In general asymetric
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Bipartite networks: One-mode projections

Projection to a (weighted) network only with vertices of the second
type:

Pij =

n1∑
k=1

BkiBkj .

That is P = BTB. Note:

Pii =

n1∑
k=1

BkiBki =

n1∑
k=1

Bki .

Adjacency matrix (n2 × n2):

Aij =

{
Pij if i 6= j

0 if i = j .
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Bipartite networks: One-mode projections

Two one-mode projections based on

P = BTB , P′ = BBT .

Note: Union of ”cliques”.
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Bipartite networks - Example:Blinkist

One-mode projections to the networks of books, with an edge
between two vertices if there more than 1000 / 1500 users have
read both books.
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Accessing edge labels with the incidence matrix
For a given network one can consider the edges as one type of
vertices of a corresponding bipartite network, with the orginal
vertices representing the second type.

Useful for directed networks, where heads and tails of directed
edges are represented in the incidence matrix by −1 and 1,
respectively.

B =


1 −1 0 0
0 1 −1 0
0 1 0 −1
0 0 1 −1
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Remark: Bipartite networks and cluster synchronization

Sometimes it is interesting to look for a (mostly) bipartite
”colouring” of a network.

Example: Cluster synchronization of coupled map networks:

xi (t + 1) = (1− ε)f [xi (t)] +
ε

n

∑
j

f [xj(t)] ,

with f a chaotic map, for instance

f (x) = 2x2 − 1 .
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Remark: Bipartite networks and cluster synchronization
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Trees
A tree is a connected, undirected network that contains
no closed loops.
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Trees

I A collection of trees is called
a forest.

I Trees play an import role for
random graph models.

I In a tree, there is exactly
one path between any pair
of vertices.

I A tree of n vertices always
has exactly n − 1 edges.

I Any connected network
with n vertices and n − 1
edges is a tree.

27 / 42



Planar networks

A planar network is a network that can be drawn on a plane
without having any edges cross.

Examples:

I Trees

I Road networks
(approximately)

I Power grids (approximately)

I Shared borders between
countries, etc.
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Planar networks - Four-color theorem

”In mathematics, the four color theorem, or the four color map
theorem, states that, given any separation of a plane into
contiguous regions, producing a figure called a map, no more than
four colors are required to color the regions of the map so that no
two adjacent regions have the same color.” [Wikipedia]
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Power Grid expansion optimisation
Expansion condition: planar graph

30 / 42



Paths

I Route through the network, from vertex to vertex along the
edges

I Defined for both directed and undirected networks

I Special case: self-avoiding paths

I Length of a path: number of edges along the path (”hops”)

I Number of paths of length r between vertices i and j :

N
(r)
ij = [Ar ]ij

I Total number Lr of loops of length r anywhere in the network:

Lr =
n∑

i=1

[Ar ]ii = TrAr .
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Geodesic / shortest paths

I A path between two vertices such
that no shorter path exists

I Geodesic distance between vertices
i and j is the smallest value of r
such that [Ar ]ij > 0.

I Self-avoiding

I In general not unique

I Diameter of a network: Length of
the longest geodesic path between
any pair of vertices
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Shortest paths – some examples

Oracle of Bacon: https://oracleofbacon.org/

I Network of movie actors (joint appearance in a movie, based
on IMDB)

I Geodesic distance to Kevin Bacon
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Shortest paths – some examples

Erdös number: Consult http://wwwp.oakland.edu/enp/

I Coauthorship network

I Geodesic distance to Paul Erdös
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Shortest paths – ”Six degrees of separation”

I Classic experiment by Stanley Milgram (also known for
”obedience to authority”)

I Average path lengths in social networks
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Shortest paths and breadth-first search

I Single run of the algorithm: Finds shortest (geodesic) distance
from a source vertex s to every other vertex in the same
component of the network

I In a second step the algorithm also finds shortest paths by
construction the so-called shortest path tree
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Acyclic directed network

I Directed network without closed
loops of edges (DAG)

I Examples: power flow in an
electricity grid, citation network of
papers

I Topological ordering: For every
directed edge i → j , vertex i comes
before j in the ordering:
(1,2,3,4,6,9,10,11,12,8,7,5,13)

I With a topological ordering, the
adjacency matrix of an acyclic
directed network is strictly
triangular
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Components of networks

I Subgroups of vertices with no
connections between the respective
groups

I Disconnected network

I Subgroups: components

I Adjacency matrix: Block-diagonal
form
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Components in directed networks

I Weakly connected
components: connected in
the sense of an undirected
network

I Strongly connected
components: directed path
in both directions between
every pair in the subset
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Components in directed networks

I Out-component of a vertex i :
set of vertices which are
reachable via directed paths
starting form i , including the
vertex i itself

I In-component of a vertex i :
set of vertices from which there
is a directed path to i , including
the vertex i itself

I One often considers the out- or
in-component of a strongly
connected component
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Network of Global Corporate Control

Ownership network of transnational corporations (TNCs)
Vitali et al., PLOS One, 6 (2011)

I Ownership matrix W:
Wij is the percentage of ownership that the owner
(shareholder) i holds in firm j

I If Wij > 0 and Wjl > 0, then vertex i has an indirect
ownership of firm l

I Data: Orbis 2007 database

I Resulting network: 600508 vertices (economics actors),
containing 43060 TNCs, 1006987 edges (ownership ties)
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Network of Global Corporate Control
Vitali et al., PLOS One, 6 (2011)
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