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Duration Curves and Capacity

Factors: Examples from Germany

in 2015



Load curve

Here’s the electrical demand (load) in Germany in 2015:
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To understand this curve better and its implications for the market, it’s useful to stack the

hours of the year from left to right in order of the amount of load.
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Load duration curve

This re-ordering is called a duration curve.

For the load it’s the load duration curve.
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Nuclear curve

Can do the same for nuclear output:
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Nuclear duration curve

Duration curve is pretty flat, because it is economic to run nuclear almost all the time as

baseload plant:
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The equivalent fraction of time that the plants run at full capacity over the year is the

capacity factor - nuclear has a high capacity factor, usually around 70-90%.
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Gas curve

Can do the same for gas output:
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Gas duration curve

Duration curve is partially flat (for heat-driven CHP) and partially peaked (for peaking plant):
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The capacity factor for gas is much lower - more like 20%.
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Price curve

Can do the same for price during the year:
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Price duration curve

By ordering we get the price duration curve:
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Question

Now we are in a position to consider the questions:

� What determines the distribution of investment in different generation technologies?

� How is it connected to variable costs, capital costs and capacity factors?

We will find the price and load duration curves very useful.
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Investment Optimisation:

Dispatchable Generation



Investment optimisation

Now we also optimise investment in the capacities of generators, storage and network lines

for the whole system not just a single plant operator, to maximise long-run efficiency.

We will promote the capacities Gi,s , Gi,r ,∗, Ei,r and Fℓ to optimisation variables.

For generation investment, we want to answer the following questions:

� What determines the distribution of investment in different generation technologies?

� How is it connected to variable costs, capital costs and capacity factors?

We will find price and load duration curves very useful.
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Definition of long-run efficiency

Up until now we have considered short-run equilibria that ensure short-run efficiency (static),

i.e. they make the best use of presently available productive resources.

Long-run efficiency (dynamic) requires in addition the optimal investment in productive

capacity.

Concretely: given a set of options, costs and constraints for different generators

(nuclear/gas/wind/solar) what is the optimal generation portfolio for maximising long-run

welfare?

From an individual generators’ perspective: how best should I invest in extra capacity?

We will show again that with perfect competition and no barriers to entry, the system-optimal

situation can be reached by individuals following their own profit.

12



Baseload versus Peaking Plant

Load (= Electrical Demand) is low during night; in Northern Europe in the winter, the peak is

in the evening.

To meet this load profile, cheap baseload generation runs the whole time; more expensive

peaking plant covers the difference.
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Different types of generators

Fuel/Prime Marginal Capital Controllable Predictable CO2

mover cost cost days ahead

Oil V. High Low Yes Yes Medium

Gas OCGT High Low Yes Yes Medium

Gas CCGT Medium Medium Yes Yes Medium

Hard Coal Medium Lowish Yes Yes High

Brown Coal Low Medium Partly Yes High

Nuclear V. Low High Partly Yes Zero

Hydro dam Zero High Yes Yes Zero

Wind/Solar Zero High Down Partly Zero
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Need to consider a multiplicity of load/weather situation

For short-run efficiency we considered a single demand situation. For investment we have to

consider many representative demand situations.
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We consider many different utility curves Ut(dt) each with an occurence probability pt > 0,∑
pt = 1. (Alternatively for generation cost minimisation, many inelastic demands dt .)
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System-optimal dispatchable generator capacities and dispatch

Suppose we have generators labelled by s at a single node with marginal costs os for each unit

of production gs,t and specific capital costs cs for fixed costs regardless of the rate of

production (e.g. investment in building capacity Gs). For a variety of demand values dt that

occur with probability pt (
∑

t pt = 1) we optimise the total average hourly system costs

min
{gs,t},{Gs}

[∑
s

csGs +
∑
s,t

ptosgs,t

]
such that (rescaling the KKT multipliers by pt to simplify later formulae)∑

s

gs,t = dt ↔ ptλt

−gs,t ≤ 0 ↔ ptµ
¯s,t

gs,t − Gs ≤ 0 ↔ pt µ̄s,t

Assume ordering o1 ≤ o2 ≤ · · · ≤ oS = v where s = S is the generator for load-shedding,

oS = v (Value of Lost Load), cS = 0 (the capacity to shed load is assumed cost-free).
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Beware units and scaling

We’ve chosen the units here so that the total objective function has units eh−1, the average

hourly system costs.∑
s,t ptosgs,t is the expectation value of the hourly production costs. gs,t has units MW, os

has units e(MWh)−1.

csGs is the investment cost averaged over each hour, i.e. the annualised investment cost

a(r ,T )I0 (like a mortgage - we’ll cover how to get this next lecture from the investment cost

I0, interest rate r and lifetime T via the annuity a(r ,T )) divided by 8760, a(r ,T )I0
8760 (we can also

add the fixed O&M costs B to it). Gs has units MW, cs has units eMW−1h−1.

We could have instead optimised average yearly system costs, then csGs would simply be the

annuity, and instead of weighting with pt such that
∑

t pt = 1, we replace it with a weighting

wt such that
∑

t wt = 8760. In this case, the total objective would have units ea−1.

17



System-optimal generator capacities and dispatch

Stationarity for gs,t gives us for each s and t the same equation we had without capacity

optimisation:

0 =
∂L
∂gs,t

= pt
(
os − λ∗

t − µ̄∗
s,t + µ

¯

∗
s,t

)
and for the capacity Gs for each s it relates the capital cost cs to the KKT multipliers for the

capacity constraint:

0 =
∂L
∂Gs

= cs +
∑
t

pt µ̄
∗
s,t

and from complementarity we get

µ̄∗
s,t(g

∗
s,t − G∗

s ) = 0

µ
¯

∗
s,t
g∗
s,t = 0

and dual feasibility (negative for minimisation) µ̄∗
s,t , µ

¯

∗
s,t

≤ 0.
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System-optimal generator capacities and dispatch

The solution for the dispatch g∗
s,t is exactly the same as without capacity optimisation. For

each t, find the marginal generator m where the supply curve intersects with the demand dt ,

i.e. the m where
∑m−1

s=1 G∗
s < dt <

∑m
s=1 G

∗
s .

The marginal generator will set the price λ∗
t = om, like before.

For s < m we have g∗
s,t = G∗

s , µ
¯

∗
s,t

= 0, µ̄∗
s,t = os − λ∗

t ≤ 0.

For s = m we have g∗
m,t = dt −

∑m−1
s=1 G∗

s to cover what’s left of the demand. Since

0 < g∗
m,t < Gm we have µ

¯

∗
m,t

= µ̄∗
m,t = 0 and therefore λ∗

t = om.

For s > m we have g∗
s,t = 0, µ

¯

∗
s,t

= λ∗
t − os ≤ 0, µ̄∗

s,t = 0.

What about the G∗
s ?
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System-optimal generator capacities and dispatch

The G∗
s are determined implicitly based on the interactions between costs and prices.

From stationarity we had the relation

cs = −
∑
t

pt µ̄
∗
s,t

The µ̄∗
s,t were only non-zero with λ∗

t > os so we can re-write this as

cs =
∑

t|λ∗
t >os

pt(λ
∗
t − os)

This is the average inframarginal rent the generator makes in the short-run market,

which is its contribution towards covering its fixed costs.

‘Increase capacity until marginal increase in profit equals the cost of extra capacity.’

Above this capacity the generator makes less money from the market than its cost ⇒ bad

investment.
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Multiple price duration

The optimal mix of generation is where, for each generation type, the area under the

price–duration curve and above the variable cost of that generation type is equal to the fixed

cost of adding capacity of that generation type.

o1

o2

o3
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Multiple generators with linear costs and perfectly inelastic demand

Assume again we have o1 ≤ o2 ≤ · · · ≤ oS = v and Ks =
∑s

p=1 G
∗
p then:

λt =

{
v for dt > KS−1

os if Ks−1 < dt ≤ Ks , for s = 1, . . .S − 1

Looking at the area under the price duration curve but above the variable cost, we then find:

cs = (v − os)P(d > KS−1) +
S−1∑
j=s+1

(oj − os)P(Kj−1 < d ≤ Kj)

22



Example with three generators plus load shedding
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Example for S = 4 (3 generators plus load-shedding).

The upper graph is the load duration curve.

The y-axis is marked with the summed capacities of

the generators Ks =
∑s

p=1 G
∗
p . These meet the curve

at θs = P(dt > Ks) (the definition of load duration

curve).

The lower graph is the price duration curve.

During the time when generator s is price-setting, the

price is os .

When dt > G∗
1 + G∗

2 + G∗
3 then we have

load-shedding and the price is v .
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Example with three generators plus load shedding
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How is this related to the capital costs?

For generator 3, the capital cost c3 is the area below

the price duration curve when λ∗
t > o3.

This only happens when there is load-shedding and

λ∗
t = v when dt > K3 = G∗

1 + G∗
2 + G∗

3 .

The area is given by

c3 = (v − o3)θ3

= (v − o3)P(dt > K3)
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Example with three generators plus load shedding
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How is this related to the capital costs?

For generator 2, the capital cost c2 is the area below

the price duration curve when λ∗
t > o2.

This only happens when there is load-shedding or

when generator 3 is price-setting.

The area is given by

c2 = (v − o2)θ3 + (o3 − o2)(θ2 − θ3)

= (v − o2)P(dt > K3)

+ (o3 − o2) (P(dt > K2)− P(dt > K3))

= (v − o2)P(dt > K3) + (o3 − o2)P(K2 < dt ≤ K3)
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Example with three generators plus load shedding
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How is this related to the capital costs?

Finally for generator 1, the capital cost c1 is the area

below the price duration curve when λ∗
t > o1.

This only happens when there is load-shedding or

when generator 2 or 3 is price-setting.

The area is given by

c1 = (v − o1)θ3 + (o3 − o1)(θ2 − θ3) + (o2 − o1)(θ1 − θ2)

= (v − o1)P(dt > K3)

+ (o3 − o1) (P(dt > K2)− P(dt > K3))

+ (o2 − o1) (P(dt > K1)− P(dt > K2))

= (v − o1)P(dt > K3) + (o3 − o1)P(K2 < dt ≤ K3)

+ (o2 − o1)P(K1 < dt ≤ K2)
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Screening curve

These equations can be rewritten recursively using the substitution θs = P(d > Ks):

cS−1 + θS−1oS−1 = vθS−1

cs + θsos = cs+1 + θsos+1 ∀s = 1, . . .S − 2

The first equation can be solved to find θS−1, then the other equations can be solved

recursively to find the remaining θs . The θs correspond to the optimal capacity factors of each

type of generator, which correspond to the fraction of time the generator runs at full power.
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Screening curve

The costs cs + osθ as a function of the capacity factors θ can be drawn together as a

screening curve (more expensive options are screened from the optimal inner polygon).

The intersection points determine which generators are optimal for which capacity factors.
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cs + osθ is the cost per MW and per hour of

delivering power for θ of the time. cs gives the

intercept of the y axis; os gives the slope.

In this example we have load shedding, a

baseload generator 1 and a peaking generator 2.

For a capacity factor between 0 and θ2, it is

cheapest to shed load.

Between θ2 and θ1 the peaking generator 2 is

lowest cost.

Above θ1 the baseload generator 1 is best.
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Relation to levelised cost of electricity (LCOE)
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� cs + osθ is the cost per MW and per hour

of delivering power for θ of the time.

� To get the levelised cost of electricity

(LCOE), the cost per delivered energy, we

divide by θ:

LCOEs =
cs
θ

+ os

� The intersection points θs are the same,

but it’s now harder to read the graph.

� For peaking generator 2 with low capital

cost c2 and high marginal cost o2,

LCOE2 → o2 as θ → 1.
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Screening curve versus Load duration

c2

c1

θ2 θ1

θ2 θ1

The screening curve allows us to read of

the optimal generator capacities G∗
p

from the load duration curve.

� We match the intersection points θs
to the load duration curve.

� The values of the load duration

curve at θs tell us what the

cumulative sums Ks =
∑s

p=1 G
∗
p of

the generator capacities are.

� This allows us to deduce the

generator capacities G∗
p .

30
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Example: 2 generation technologies and load shedding

Suppose that electrical demand is perfectly inelastic with a load duration curve given by

d(θ) = 1000− 1000θ for 0 ≤ θ ≤ 1. Suppose that there are two different types of generation

with variable costs of 2 and 12 e/MWh respectively, together with load-shedding at a cost of

1012 e/MWh. The fixed costs of the two generation types are 15 and 10 e/MWh respectively.

See the below table for a summary of the costs.

Generator os [e/MWh] cs [e/MW/h]

1 2 15

2 12 10

LS 1012 0
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Example: 2 generation technologies and load shedding

1. What is the interpretation of the load duration curve?

2. Below which capacity factor θ1 is it cheaper to run Generator 2 rather than to run

Generator 1?

3. Below which capacity factor θ2 is it cheaper to shed load than to run Generator 2?

4. Plot the costs as a function of θ and mark these intersection points on a screening curve.

5. Find the optimal capacities of Generators 1 and 2 in this market.
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Example: 2 generation technologies and load shedding
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Procedure:

� Draw the screening curve and load

duration curve d(θ).

� Determine the intersection points θs from

the screening curve.

� Compute the cumulative generator

capacity sums from the load duration

curve d(θs) = Ks =
∑s

p=1 G
∗
p .

� Find the capacities G∗
s from the

cumulative sums Ks .
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Example: 2 generation technologies and load shedding

To find θ1, solve for the intersection of Generator 1’s cost curve with Generator 2’s cost curve

as a function of capacity factor:

c1 + θ1o1 = c2 + θ1o2 ⇒ 15 + 2θ1 = 10 + 12θ1

This gives θ1 = 0.5. At this point the demand is d(0.5) = 500 MW therefore

K1 = G∗
1 = 500 MW

To find θ2, solver for where Generator 2 crosses the load-shedding line:

c2 + θ2o2 = cLS + θ2oLS ⇒ 10 + 12θ2 = 1012θ2

This gives θ2 = 0.01. At this point the demand is d(0.01) = 990 MW so:

K2 = G∗
1 + G∗

2 = 990 MW

i.e. G∗
2 = 490 MW. The remaining load is shed, G∗

LS = 10 MW.
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Investment Optimisation:

Transmission



Investment optimisation: transmission

As before, our approach to the question of “What is the optimal amount of transmission”

is determined by the most efficient long-term solution. Promote Fℓ to an optimisation variable

with specific capital cost cℓ. For nodes i and transmission lines ℓ enforcing KCL but not KVL:

min
{gi,s,t},{Gi,s},{fℓ,t},{Fℓ}

∑
s

ci,sGi,s +
∑
i,s,t

ptoi,sgi,s,t +
∑
ℓ

cℓFℓ


such that ∑

s

gi,s,t −
∑
ℓ

Kiℓfℓ,t = di,t ↔ ptλi,t

−gi,s,t ≤ 0 ↔ ptµ
¯i,s,t

gi,s,t − Gi,s ≤ 0 ↔ pt µ̄i,s,t

fℓ,t − Fℓ ≤ 0 ↔ pt µ̄ℓ,t

−fℓ,t − Fℓ ≤ 0 ↔ ptµ
¯ℓ,t
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Investment optimisation: transmission

From stationarity for fℓ,t we find

0 =
∂L
∂fℓ,t

= pt

(∑
i

Kiℓλ
∗
i,t − µ̄∗

ℓ,t + µ
¯

∗
ℓ,t

)
I.e. the KKT multipliers µ̄∗

ℓ,t or µ
¯

∗
ℓ,t

are non-zero when the line ℓ is congested (by definition),

at which time one of them equals the price difference between the ends of the line.

For the investment we find from stationarity 0 = ∂L
∂Fℓ

cℓ = −
∑
t

pt
(
µ̄∗
ℓ,t + µ

¯

∗
ℓ,t

)
Remember that µ̄∗

ℓ,t and µ
¯

∗
ℓ,t

are only non-zero when the line is congested.

Exactly as with generation dispatch and investment, we continue to invest in transmission until

the marginal benefit of extra transmission (i.e. extra congestion rent for extra capacity) is

equal to the marginal cost of extra transmission. This determines the optimal investment level.
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