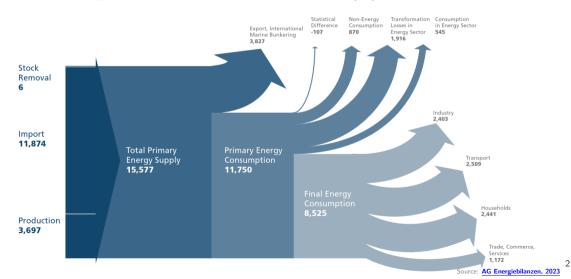


Energy Systems, Summer Semester 2025 Lecture 2: Energy Balances

Prof. Tom Brown, Dr. Fabian Neumann

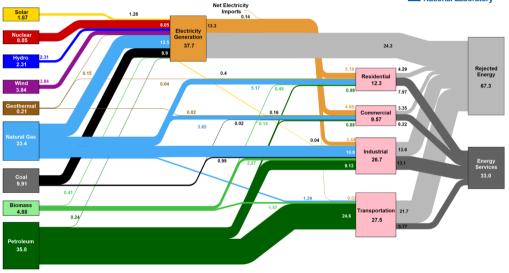
Department of Digital Transformation in Energy Systems, Institute of Energy Technology, TU Berlin

Unless otherwise stated, graphics and text are Copyright © Tom Brown, 2018-2024. Material for which no other attribution are given are licensed under a Creative Commons Attribution 4.0 International Licence.


- 1. Measuring energy
- 2. Energy conversion
- 3. Energy Balances

Measuring energy

Goal: Understand Energy Flow Through the Economy



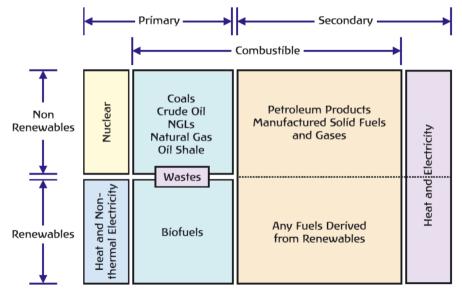
Example: energy balance for Germany in 2022 in Petajoule (PJ)

Example: Sankey diagram for US in 2022

Estimated U.S. Energy Consumption in 2022: 100.3 Quads

3

Definitions: Primary Versus Final Versus Useful Energy


Definitions of energy are oriented towards conventional energy sources like coal, oil and gas.

- **Primary energy** is energy as found in nature before it undergoes any transformation (crude oil, coal, gas, biomass, nuclear, wind, solar).
- **Secondary energy** is energy after conversion processes, either chemical or physical (refined fuels like gasoline, electricity from a coal power plant).
- Final energy is the energy as it is sold to end users (electricity, refined fuels like gasoline, gas for building heating).
- **Useful energy** is the energy after conversion by the consumer, available to be used (heat in a home, light, mechanical work).
- Energy services is what the consumer actually wants: a warm home, transportation from A to B, manufactured goods, etc.

The two most commonly used definitions are **primary** and **final** energy, since they are **easier to measure** in a fossil-fuelled world. With more focus on renewables and electrification, this **may change**!

Classification of Energy Sources

Source: OECD/IEA Energy Statistics Manual, 2005

Units of Energy: Joule and tonne of oil equivalent

Joule (J) is the SI unit of energy.

Conventional primary energy sources are often measured in units corresponding to their natural form: volume, mass etc.

We can convert from measurements of mass [kg] and volume $[m^3]$ to energy units using the calorific value $[J/kg, J/m^3]$, which measures the heat from combustion.

Example: the unit tonne of oil equivalent (toe) is the energy generated by burning one metric ton of oil. Since the calorific value of oil is 41.88 MJ/kg, we have

1 toe = 41.88 GJ

 $[{\sf Reminder:}\ k=kilo=1e3,\ M={\sf Mega}=1e6,\ G={\sf Giga}=1e9,\ T={\sf Tera}=1e12,\ P={\sf Peta}=1e15,\ E={\sf Exa}=1e18.]$

Lower Heating Values of Energy Fuels

	Density	Energy [10 ⁹ J]	Remarks
1 t Crude oil	0.86 g/cm ³	39–43	Mean: 41.9·10 ⁹ J
1 Barrel (bbl) crude oil		5.7	=159 I (ca. 50/365 t.o.e.)
1 t Heating oil el.	0.84 g/cm ³	42.5	at 15–20 °C
1 t Gasoline	0.75 g/cm ³	43.1	at 15–20 °C
1 t Methanol (CH ₃ OH)	0.80 g/cm ³	19.7	
1 t Ethanol (C ₂ H ₅ OH)	0.80 g/cm ³	26.9	
1 t Liquefied Petroleum Gas LPG	0.53 g/cm ³	45.9	at 2–18 bar
1 t Liquefied Natural Gas LNG	0.47 g/cm ³	47.2	at –164 ºC
1 t Hydrogen (LH ₂)	0.071 g/cm ³	120.4	at –252 °C
1000 m ³ Natural gas L	0.82 kg/m ³	33.4	Mean: 35.6·10 ⁹ J
1000 m ³ Natural gas H	0.79 kg/m ³	36.6	
1000 m ³ Compressed gas CNG	156 kg/m ³	7000	at 200 bar
1000 m ³ Petroleum gas		40.7	
1000 m ³ Methane (CH ₄)	0.65 kg/m ³	35.8	
1000 m ³ Propane (C ₃ H ₈)	1.87 kg/m ³	86.7	
1000 m ³ hydrogen (H ₂)	0.09 kg/m ³	10.8	
1000 m ³ Liquefied hydrogen (H ₂)	15.6 kg/m ³	1950	at 200 bar
1 t Hard coal		29-35	Mean 29.3 · 10 ⁹ J
1 t Lignite		7.5–13	
1 t Wood	0.6 g/cm ³	14.6	3.5 · 10 ⁶ kcal
1 t Uranium oxide (U ₃ O ₈)		414'000	Light Water Reactor LWR

Higher and Lower Heating Values

- Lower Heating Value (LHV) is the maximum amount of usable heat from combustion without counting the condensation enthalpy of water vapor contained in the exhaust gas.
- Higher Heating Value (HHV) includes the condensation enthalpy of water vapor contained in the exhaust gas. It is always higher than the LHV (e.g. 11% higher for methane).

Fuel	State at ambient temperature and pressure	HHV (MJ/kg)	LHV (MJ/kg)
Hydrogen	Gas	141.9	119.9
Methane	Gas	55.5	50
Ethane	Gas	51.9	47.8
Gasoline	Liquid	47.5	44.5
Diesel	Liquid	44.8	42.5
Methanol	Liquid	20	18.1

LHV is most commonly used in European statistics. HHV becomes relevant in e.g. condensing combined heat and power plants (CHP) where vapor is condensed.

Power is the rate of consumption of energy.

It is measured in Watts:

1 Watt = 1 Joule per second

The symbol for Watt is W, 1 W = 1 J/s.

1 kilo-Watt = 1 kW = 1,000 W1 mega-Watt = 1 MW = 1,000,000 W1 giga-Watt = 1 GW = 1,000,000,000 W1 tera-Watt = 1 TW = 1,000,000,000,000 W

Power: Examples of consumption

At full power, the following items consume:

ltem	Power
New efficient lightbulb	10 W
Old-fashioned lightbulb	70 W
Single room air-conditioning	1.5 kW
Kettle	2 kW
Factory	\sim 1-500 MW
CERN	200 MW
Germany total demand	35-80 GW

If all energy is electrified in 2050 and energy consumption equalises between nations, the average electricity consumption of the world would be around 12 TW.

Suppose half is met with wind (capacity factor 33.3%) and half is met with solar PV (capacity factor 16.6%). [Capacity factor = average generation / capacity.] How much wind and solar capacity does the world need (assuming perfect lossless storage)?

If all energy is electrified in 2050 and energy consumption equalises between nations, the average electricity consumption of the world would be around 12 TW.

Suppose half is met with wind (capacity factor 33.3%) and half is met with solar PV (capacity factor 16.6%). [Capacity factor = average generation / capacity.] How much wind and solar capacity does the world need (assuming perfect lossless storage)?

Wind: 6 TW / 0.333 = 18 TW (around 900 GW was installed by 2022) Solar: 6 TW / 0.166 = 36 TW (around 1050 GW was installed by 2022)

Power: Supplying world's energy with wind and solar

If installed wind density on average is 10 MW/km^2 and solar is 72 MW/km^2 , what percentage of world land (148 million km^2) is taken with each?

Power: Supplying world's energy with wind and solar

If installed wind density on average is 10 $\rm MW/km^2$ and solar is 72 $\rm MW/km^2$, what percentage of world land (148 million $\rm km^2$) is taken with each?

Wind: 18 TW/(10 $\rm MW/km^2) = 1.8~million~km^2$ (around 1.2% of total land = area of Indonesia)

Solar: 36 TW/(72 MW/km²) = 0.5 million km² (around 0.3% of total land = area of Spain)

Nota Bene:

- Wind doesn't interfere with other land uses like agriculture; can also be built offshore
- 10 MW/km² is a **local** maximum installation density for wind, but to allow wind replenishment over large areas 2 MW/km² is suitable as a **wide-area** limit
- Solar can be rooftop or combined with agriculture = agrivoltaics

In the electricity sector, energy is usually measured in 'Watt-hours', Wh.

 $1 \ \text{kWh} = \text{power consumption of} \ 1 \ \text{kW}$ for one hour

E.g. a 10 W lightbulb left on for two hours will consume

10 W * 2 h = 20 Wh

It is easy to convert this back to the SI unit for energy, Joules:

1 kWh = (1000 W) * (1 h) = (1000 J/s)*(3600 s) = 3.6 MJ

Germany consumes around 600 TWh per year, written 600 TWh/a.

What is the *average* power consumption in GW?

Germany consumes around 600 TWh per year, written 600 TWh/a.

What is the *average* power consumption in GW?

$$600 \text{ TWh/a} = \frac{(600 \text{ TW}) * (1 \text{ h})}{(365 * 24 \text{ h})}$$
$$= \frac{600}{8760} \text{ TW}$$
$$= 68.5 \text{ GW}$$

Tables for converting units

multiply by:	GJ	Toe	MBtu	MWh
GJ	1	0.024	0.948	0.278
Toe	41.868	1	39.683	11.630
MBtu	1.055	0.025	1	0.293
MWh	3.600	0.086	3.412	1

Units used in the United States:

- British thermal unit (Btu), 1 million Btu = MBtu (often written MMBtu) = 0.293 MWh
- Quad = 1e15 Btu = 293 TWh

Energy conversion

Energy conversion/transformation processes

Output	Mechanical	Thermal	Chemical		
Input	energy	energy	energy	Electricity	Radiation
Mechanical energy	-	Frictional heat	-	Hydropower turbine	_
Thermal energy	Heat engine	-	Thermo- chemistry	Electrical generator	-
Chemical energy	Combustion engine	Boiler	-	Fuel cell	Gas lamp
Electricity	Electric engine	Induction heater	Electrolysis	-	Electric bulb
Radiation	Laser	Microwave oven	Solar chemistry	Photovoltaic	-
Nuclear energy	_	Nuclear reactor	_	_	Radioactivity

Efficiency of an energy conversion device (e.g. power plant, vehicle engine):

Efficiency,
$$\eta = \frac{\text{Useful energy output}}{\text{Energy input}}$$

Example: How much much natural gas is required for generating 100 MWh of electricity in a gas power plant with an efficiency of 50%?

Efficiency

When fuel is consumed, much/most of the energy of the fuel is lost as waste heat rather than being converted to electricity.

The thermal energy, or calorific value, of the fuel is given in terms of $MWh_{\rm th}$, to distinguish it from the electrical energy $MWh_{\rm el}.$

The ratio of input thermal energy to output electrical energy is the **efficiency**.

Fuel	Calorific energy MWh _{th} /tonne	Per unit efficiency MWh _{el} /MWh _{th}	Electrical energy MWh _{el} /tonne
Lignite	2.5	0.4	1.0
Hard Coal	6.7	0.45	2.7
Gas (CCGT)	15.4	0.58	8.9
Uranium (unenriched)	150000	0.33	50000

Fuel costs to marginal costs

The cost of a fuel is often given in ${\in}/{kg}$ or ${\in}/{MWh_{th}}.$

Using the efficiency, we can convert this to \in /MWh_{el}.

For the full marginal cost, we have to also add the CO_2 price and the variable operation and maintenance (VOM) costs.

Fuel	Per unit efficiency MWh _{el} /MWh _{th}	Cost per thermal €/MWh _{th}	Cost per elec. €/MWh _{el}
Lignite	0.4	4.5	11
Hard Coal	0.45	11	24
Gas (CCGT)	0.58	19	33
Uranium	0.33	3.3	10

The $\ensuremath{\text{CO}_2}$ emissions of the fuel.

Fuel	$t_{\rm CO2}/t$	$t_{\rm C02}/\rm MWh_{th}$	$t_{\rm CO2}/\rm MWh_{el}$
Lignite	0.9	0.36	0.9
Hard Coal	2.4	0.36	0.8
Gas (CCGT)	3.1	0.2	0.35
Uranium	0	0	0

Current CO₂ price in EU Emissions Trading Scheme (ETS) is around \in 50-100/t_{CO2}

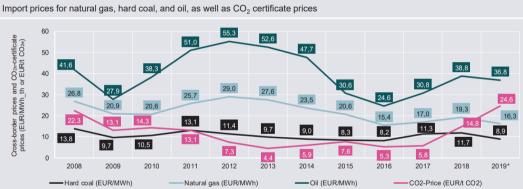
You calculate: What CO₂ price to switch gas and lignite?

What CO_2 price, i.e. $x \in /t_{\rm CO2}$, is required so that the marginal cost of gas (CCGT) is lower than lignite?

NB: It helps to track units.

What CO_2 price, i.e. $x \in /t_{\rm CO2}$, is required so that the marginal cost of gas (CCGT) is lower than lignite?

NB: It helps to track units.


We need to solve for the switch point by adding the CO_2 price to the fuel cost. Left is lignite, right is gas:

 $11 \in /\mathrm{MWh}_{\mathrm{el}} + (0.9 \ \mathrm{tCO}_2/\mathrm{MWh}_{\mathrm{el}}) \cdot (x \in /\mathrm{tCO}_2) = 33 \in /\mathrm{MWh}_{\mathrm{el}} + (0.35 \ \mathrm{tCO}_2/\mathrm{MWh}_{\mathrm{el}}) \cdot (x \in /\mathrm{tCO}_2)$

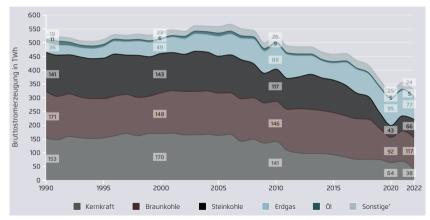
Solve:

$$x = \frac{33 - 11}{0.9 - 0.35} = 40$$

CO2 and import costs change over time...

Universitä Rerlin

...which affects the marginal costs of generation


Marginal costs for new natural-gas power plants and old power plants fired with lignite and hard coal

CO2 emissions from electricity sector

 CO_2 emissions in electricity generation stagnated for years because of coal, which is slowly being pushed out by the CO_2 price and in the longer term by the Kohleausstieg.

The European Commission's REPowerEU plan, published in March 2022, aims for 10 Mt/a of clean hydrogen to be produced domestically in the European Union by 2030, with another 10 Mt imported.

If electrolysis of water to hydrogen is 70% efficient (LHV) and there is 33 MWh/tH₂ (LHV), what will be the electricity consumption from electrolysis for hydrogen in the EU in 2030?

The European Commission's REPowerEU plan, published in March 2022, aims for 10 Mt/a of clean hydrogen to be produced domestically in the European Union by 2030, with another 10 Mt imported.

If electrolysis of water to hydrogen is 70% efficient (LHV) and there is 33 MWh/tH₂ (LHV), what will be the electricity consumption from electrolysis for hydrogen in the EU in 2030?

Consumption will be

$$\frac{10~\mathrm{MtH_2/a} * 33~\mathrm{MWh_{H_2}/tH_2}}{0.7~\mathrm{MWh_{H_2}/MWh_{el}}} = 471~\mathrm{TWh_{el}/a}$$

Compare to the current electricity consumption in Europe of around 3200 $TWh_{\rm el}/a.$

Capacity Factors and Full Load Hours

A generator's capacity factor is the average power generation divided by the power capacity.

For variable renewable generators it depends on weather, generator model and curtailment; for dispatchable generators it depends on market conditions and maintenance schedules.

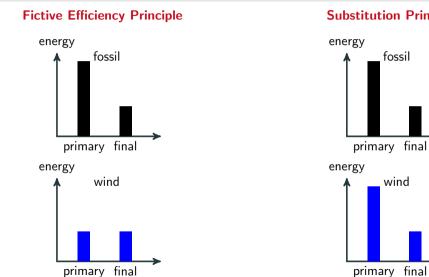
A generator's **full load hours** are the equivalent number of hours at full capacity the generator required to produce its yearly energy yield. The two quantities are related:

full load hours = per unit capacity factor \cdot 365 \cdot 24 = per unit capacity factor \cdot 8760

Typical values for Germany:

Fuel	capacity factor [%]	full load hours
wind	20-35	1600-3000
solar	10-12	800-1000
nuclear	70-90	6000-8000
open-cycle gas	20	1500

Measuring primary energy of renewables



How to value primary energy of carriers which do not have a calorific value, e.g. wind, solar PV, hydroelectricity?

- Fictive Efficiency Principle: (also known as 'Physical Energy Accounting Method' or 'Direct Equivalent Method') (most common: used by IEA, OECD, Eurostat, IPCC) assume there is a 1-to-1 correspondence between primary energy and electricity for wind, solar, hydro (i.e. 100% conversion efficiency)
- Substitution Principle: (also know as the 'Input-Equivalent Method') (used by BP) assume the conversion efficiency from primary energy to electricity is the same as in a thermal (fossil or nuclear) powerplant (e.g. 35-45%)
- Efficiency Principle: actual efficiency of respective technology (hydro 80-90% gravitational potential energy of water to electricity, wind 30-55% kinetic energy of air to electricity, solar 10-25% radiation to electricity)

Fictive Efficiency vs Substitution Principle for Electricity Generation

Substitution Principle

Beware: primary energy can underestimate renewables share

Suppose 50% of electricity is provided by wind and solar, the rest by fossil plants with 33% efficiency.

What is the fraction of renewables in primary energy from renewables:

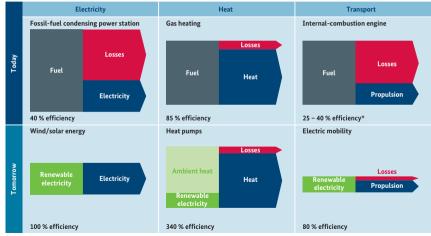
- 1. Using the Substitution Principle
- 2. Using the Fictive Efficiency Principle

Beware: primary energy can underestimate renewables share

Suppose 50% of electricity is provided by wind and solar, the rest by fossil plants with 33% efficiency.

What is the fraction of renewables in primary energy from renewables:

- 1. Using the Substitution Principle
- 2. Using the Fictive Efficiency Principle
- 1. 50% (since we assume renewables need as much primary energy for each unit of electricity as a thermal plant)


2.
$$\frac{50}{50+50/0.33}\% = \frac{50}{50+150}\% = 25\%$$

Bad faith actors will often present renewable shares in terms of primary energy to make it look small.

Primary and final energy change with electrification

Primary energy in grey and green; useful energy in blue. NB: Also in **industry**, <u>electrification</u> of process heat can be more efficient since the heat can be focused better than e.g. burning gas.

* The efficiency of internal-combustion engines in other applications (e.g. maritime transport, engine-driven power plants) can exceed 50 %.

Primary and final energy change with renewables and electrification

Switching from thermal power plants to wind, solar and hydro leads to an **automatic decline in primary energy** using the Fictive Efficiency Principle, since thermal losses are no longer counted.

With electrification and efficiency, **final energy also decline** (compare gasoline required for a car versus electricity need; similarly natural gas for boiler versus electricity for a heat pump).

Both primary and final energy will decline! Primary by \sim 50%, final by \sim 33%.

Expect roughly **double electricity demand** (assuming widespread electrification of end demands, indirect electrification with H2 and efficiency measures).

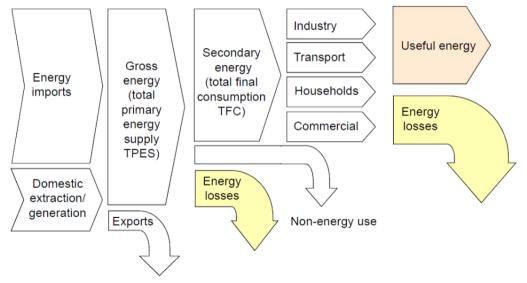
Electricity will become the dominant final energy, primary energy will become less relevant.

Most important **new metrics** become: fraction of electricity from non-emitting sources; efficiency of electricity meeting energy services.

Energy Balances

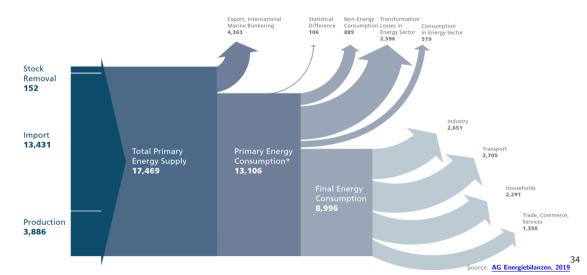
Energy Balances

Energy is always **conserved** as it flows through the energy system.


Energy balances tabulate this energy conservation at each step of conversion from primary energy supply to primary energy consumption to final energy to energy services for consumers.

At each interface, inputs and outputs **balance**.

Principles of Energy Flow



33

Energy Flow In Germany

Example: energy flow chart for Germany in 2018 in Petajoule (PJ)

Energy Balance Structure (AGEB)

Indigenous production Imports Stock removal
Primary energy supply Exports International marine bunkers Stock build-up
Primary energy consumption Conversion input Conversion output Energy consumption in the conversion sector Flaring and transmission losses
Energy available Non-energy consumption Statistical differences
Final energy consumption Industry Transport Households Small scale (trade, commerce, services)

Simplified Energy Balance for EU28 in 2016

ktoe EU28	2016	Total all products	Solid fuels	Oil (total)	Gas	Total Renewables	Wastes (non ren.)	Nuclear heat	Derived heat	Electricity
+ Primary production	8 100100	755,389	131,850	74,354	107,238	210,708	14,537	216,703		
 Primary production receipt 	8_100110	9,397		9,397						
+ From other sources (Recovered products)	8 100200	4,522	404	3,818	300					
+ Recycled products	8 100210	1,044		1,044						
+ Imports	8_100300	1,483,219	134,902	941,564	357,102	16,395	385		6	32,865
+ Stock changes	B_100400	21,263	11,807	3,423	5,944	89	0			
Exports	B_100500	579,508	38,239	411,746	87,613	10,574	29		5	31,301
- Bunkers	8 100800	44,152		44,151	1					
- Direct use	B 100112	10,559		10,559						
Gross inland consumption	B 100900	1,640,615	240,724	567,142	382,969	216,618	14,893	216,703	1	1,564
Transformation input	B 101000	1,294,958	224,492	654,689	125,132	61,875	11,027	216,703	768	272
+ Conventional Thermal Power Stations	B 101001	358,478	165,433	12,820	114,576	54,977	9,905		768	
+ Nuclear Power Stations	B 101002	216,703						216,703		
+ Coke-ovens	B 101004	36,597	36,215	355	27					
+ Blast-fumaces	B 101006	12,918	12,918							
+ Gas works	B 101007	695	674		21					
+ Refineries	# 101008	640,308		640,308						
+ District heating plants	# 101009	21.015	3.544	963	8.654	6,459	1.122			272
+ Patent fuel plants	# 101010	219	142	77		01100				
+ BKB / PB Plants	# 101011	4,385	4,385							
+ Coal Liguefaction Plants	B 101012	901	901							
+ For Blended Natural Gas	B 101012	391		162		230				
+ Charcoal production plants (transformation)	B 101015	209				209				
+ Gas-to-Liquids (GTL) Plants (transformation)	B 101016	200				200				
+ Non-specified Transformation Input	B 101020	2.138	279	4	1.855					
Transformation output	E 101000	963,032	31,378	640,125	20,223	62			59,192	212.054
+ Conventional Thermal Power Stations	B 101101	181.172	51,510	040,420	LOILLO	U.L.			41.319	139,854
+ Nuclear power stations	B_101102	72.303							103	72.200
+ Coke-ovens	B 101104	34,193	27.365		6.828				100	16,600
+ Blast-fumaces	B 101106	12.918	21,000		12.918					
+ Gas works	B 101107	477			477					
+ Refineries	B 10109	640.125		640.125						
Patent Fuel Plants	#_10110	173	173	040,120						
+ BKB / PB Plants	#_10110 #_10111	3.840	3.840							
+ Charcoal production plants	#_101115	62	0,040			62				
District Heating Plants	# 101109 # 101109	17,770				02			17,770	
Exchanges and transfers, returns	B 101200	2,969		2,969		-65.240				65.240
Consumption of the energy branch	B 101300	80,128	636	33,402	19,028	654	87		4,913	21,408
Distribution losses	B 101400	26,372	35	53	3,093	24			5,554	17.612
Available for Final Consumption	B 101500	1,205,158	46,938	522.093	255,939	88,886	3,780		47,957	239,565
Final non-energy consumption	B 101600	97.773	1.763	82,480	13,530	00,000	0,100		411001	200,000
Final energy consumption	B 101700	1.107.818	45,338	437,131	245.284	88,949	3,780		47.932	239,405
+ Industry	8 101700	276.823	33,774	27.513	86.242	22.542	3,700		16.112	87.115
+ Transport	8_101800 8_101900	367.272	12	344.648	3.284	13.840	0,024		10,112	5,488
+ Other Sectors	B_101900 B_102000	463.723	11.552	64,969	155,758	52,567	256		31.820	146.801
+ Services	E 102035	150.043	923	15.668	46.281	4.889	255		9.274	72.754
+ Residential	B_102035 B_102010	284.832	9.507	33.139	105.175	45.369	200		22.148	69,494
										4.194
+ Agriculture / Forestry	B 102030	24.079	1.082	12.992	3.426	2.132	1		252	

- Gross inland consumption = Primary energy consumption = Production + Imports + Stock changes - Exports -Bunkers
- Bunkers is e.g. marine fuel stored at ports
- Around 330 Mtoe lost in transformation
- Final consumption = Final non-energy + Final energy consumption

- What is the average electrical efficiency of conventional power stations in the EU?
- What is the average electrical efficiency of nuclear power stations in the EU?
- What fraction of industry/transport/residential final energy consumption is electricity?
- What is non-energy consumption?

Moving Beyond Energy Balances: JRC IDEES Database

Includes more granular estimates of useful energy, efficiency, $\rm CO_2$ emissions, breakdown e.g. industry by process.

From Joint Research Centre (JRC) of the European Commission.

https://data.jrc.ec.europa.eu/dataset/jrc-10110-10001

"The 'Integrated Database of the European Energy Sector' (JRC-IDEES) is a one-stop data-box that incorporates in a single database all information necessary for a deep understanding of the dynamics of the European energy system, so as to better analyse the past and to create a robust basis for future policy assessments. JRC-IDEES offers a consistent set of disaggregated energy-economy-environment data, compliant with the EUROSTAT energy balances, as well as widely acknowledged data on existing technologies. It provides a plausible decomposition of energy consumption, allocating it to specific processes and end-uses."

JRC IDEES: Residential energy appliances

EU28 - Residential / specific electric uses	2010	2011	2012	2013	2014	2015
Final energy consumption (ktoe)	39,989.2	39,993.1	39.731.9	39.096.5	38,404.6	37.433.3
White appliances	15,205.1	15,357.2	15,569.5	15,703.9	15,963.3	16,147.
Refrigerators and freezers	8,168.9	8,233.9	8,318.9	8,346.1	8,493.3	8,591.
Washing machine	3.042.6	3.059.4	3.091.5	3,101.5	3,125.0	3,146.0
Clothes dryer	2.173.8	2.210.6	2,257.8	2.309.7	2.351.5	2,386.
Dishwasher	2,173.8	1.853.4	1,901.4	1.946.6	1,993.6	2,380.
Brown appliances	1,819.7	1,853.4	1,901.4	1,940.0	1,993.6	14,282.0
TV and multimedia	10,960.1	11,240.8	11,423.7	11,489.8	11,451.5	11,304.
I V and multimedia ICT equipment	2,715.5	2,800.0	2,891.8	2,957.4	2,986.9	2,977.3
			9,846.8			
Lighting and other electricity uses	11,108.5	10,595.0		8,945.3	8,002.9	7,003.
Lighting	7,303.9	6,706.6	5,874.6	4,909.8	3,908.0	2,871.
Other appliances (vacuum cleaners, irons etc.)	3,804.6	3,888.5	3,972.2	4,035.5	4,094.9	4,131.
Total MW installed (in average operating mode)	1,793,429.5	1,803,111.1	1,808,318.2	1,798,855.9	1,785,602.2	1,760,140.
White appliances	198,249.6	201,660.3	204,205.7	205,003.0	206,377.1	206,322.
Refrigerators and freezers	10,843.3	10,929.5	11,042.4	11,078.6	11,273.9	11,404.0
Washing machine	46,970.9	46,636.3	46,501.5	46,097.7	46,013.4	45,439.
Clothes dryer	103,001.4	106,198.2	108,150.6	108,822.7	109,478.3	109,645.
Dishwasher	37,434.0	37,896.3	38,511.3	39,004.0	39,611.6	39,832.
Brown appliances	113,857.3	116,148.5	118,037.1	118,656.8	118,007.3	116,001.
TV and multimedia	71,905.5	73,160.4	73,861.1	73,760.4	72,967.2	71,455.
ICT equipment	41,951.7	42,988.1	44,176.0	44,896.4	45,040.0	44,546.0
Lighting and other electricity uses	1,481,322.7	1,485,302.2	1,486,075.4	1,475,196.2	1,461,217.8	1,437,816.
Lighting	161,113.5	147,979.3	129,850.0	108,601.0	86,429.1	63,403.
Other appliances (vacuum cleaners, irons etc.)	1,320,209.2	1,337,322.9	1,356,225.3	1,366,595.2	1,374,788.7	1,374,412.
Total number of appliances						
White appliances						
Refrigerators and freezers	281,386,019	291,932,612	304,497,583	316,257,646	329,569,096	342,024,03
Washing machine	183,768,546	190,087,533	199,158,165	209,279,726	219,587,016	232,061,61
Clothes dryer	64,612,619	68,086,186	71,170,754	73,924,700	77,176,183	81,093,40

 NB: Peak electricity consumption in Europe is around 500 GW.

 If all 1760 GW of appliances came on simultaneously, system would be overwhelmed.

 What do you notice about the ratio of total energy consumption to installed power?

JRC IDEES: Residential heating efficiency

U28 - System efficiency indicator of total stock	2010	2011	2012	2013	2014	2015
tatio of energy service to energy consumption	0.669	0.673	0.681	0.690	0.696	0.70
Space heating	0.675	0.679	0.686	0.696	0.702	0.71
Solids	0.512	0.513	0.514	0.516	0.517	0.51
Liquified petroleum gas (LPG)	0.641	0.647	0.654	0.662	0.666	0.67
Gas/Diesel oil incl. biofuels (GDO)	0.652	0.656	0.665	0.675	0.682	0.68
Gases incl. biogas	0.681	0.684	0.691	0.697	0.702	0.70
Biomass and wastes	0.542	0.545	0.550	0.556	0.559	0.50
Geothermal energy	0.820	0.830	0.837	0.840	0.848	0.8
Derived heat	0.805	0.808	0.810	0.822	0.824	0.8
Advanced electric heating	1.679	1.815	1.946	2.116	2.240	2.3
Conventional electric heating	0.787	0.791	0.798	0.807	0.808	0.8
Electricity in circulation	1.000	1.000	1.000	1.000	1.000	1.0
Space cooling	2.323	2.463	2.611	2.746	2.881	3.0
Air conditioning	2.323	2.463	2.611	2.746	2.881	3.0
Water heating	0.626	0.629	0.632	0.636	0.638	0.6
Solids	0.448	0.450	0.452	0.454	0.455	0.4
Liquified petroleum gas (LPG)	0.585	0.588	0.592	0.596	0.598	0.5
Gas/Diesel oil incl. biofuels (GDO)	0.570	0.572	0.577	0.580	0.584	0.5
Gases incl. biogas	0.589	0.591	0.595	0.598	0.600	0.6
Biomass and wastes	0.485	0.488	0.491	0.494	0.497	0.5
Geothermal energy						
Derived heat	0.847	0.850	0.850	0.855	0.858	0.8
Electricity	0.744	0.747	0.752	0.757	0.761	0.7
Solar	1.000	1.000	1.000	1.000	1.000	1.0
Cooking	0.615	0.620	0.624	0.628	0.632	0.6
Solids	0.344	0.345	0.346	0.347	0.348	0.3
Liquified petroleum gas (LPG)	0.461	0.463	0.466	0.469	0.470	0.4
Gases incl. biogas	0.505	0.508	0.510	0.513	0.515	0.5
Biomass and wastes	0.337	0.338	0.339	0.340	0.340	0.3
Electricity	0.839	0.841	0.843	0.846	0.848	0.8

• Ratio of final energy to actual heating for space/water/cooking.

- Which fuel source is most efficient?
- Why is 'air conditioning' efficiency greater than one?
- Why is 'advanced electric heating' efficiency greater than one?