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Full power flow equations



Goal

Last time we said we can (in the linear approximation) express the flow

on each line in terms of the voltage angle at the end buses (a relative of

V = IR) for a line ` with reactance x` as

f` =
θi − θj
x`

=
1

x`

∑
i

Ki`θi

Now we explain where this comes from, and the linear approximation that

leads to it.

This is also useful when we consider the synchronisation of oscillators

later.
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Alternating Current

The majority of electrical power, including what you get out of a wall

plug, is transmitted as Alternating Current (AC), i.e. both the voltage

and current are sinusoidal waves.

[Some power is transmitted as Direct Current (DC) under bodies of

water and indeed many electronic devices require DC (must convert AC

to DC).] 5

Source: Wikipedia



Why alternating current?

Battle of currents! Edison versus Westinghouse/Tesla, etc.

https://en.wikipedia.org/wiki/War_of_Currents

AC won, because it’s easy to transform AC to a higher voltage, so you

can transmit a given power with a lower current and thus avoid the I 2R

resistive losses in power lines.

Reason: d
dt in E = dΦ

dt ; use a solenoid to induce a fluctuating magnetic

field in another solenoid with a different number of turns, giving different

potential difference.

Frequency of 50 Hz is uniform across Europe (except for train-electricity,

e.g. in Germany 16.7 Hz). 60 Hz in USA, half of Japan, etc.
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https://en.wikipedia.org/wiki/War_of_Currents


Frankfurt: Home of Long-Distance AC Transmission

First long-distance high-voltage alternating-current transmission in 1891

from hydro plant in Lauffen to Frankfurt for the Elektrotechnische

Ausstellung (176 km, 15 kV).
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Source: Wikipedia



Sinuisoidal waves

The voltage is usually written in terms of the frequency ω = 2πf and the

Root-Mean-Squared (RMS) voltage magnitude Vrms

V (t) = Vpeak sin(ωt) =
√

2Vrms sin(ωt)

Similarly for the current we have

I (t) = Ipeak sin(ωt − ϕ) =
√

2Irms sin(ωt − ϕ)

Note that they are not necessarily in phase, ϕ 6= 0.

The RMS values are useful because then for the average power with

ϕ = 0 we can forget factors of 2

〈P(t)〉 = 〈V (t)I (t)〉 = 2VrmsIrms〈sin2(ωt)〉 = VrmsIrms
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Resistive loads

For purely resistive loads, e.g. a kettle or an electric heater, we have

V (t) = RI (t)

and thus for a voltage of V (t) =
√

2Vrmse
jωt (NB: for engineers

j =
√
−1 to avoid confusion with the current i) we have

I (t) =
√

2
Vrms

R
e jωt =

1

R
V (t)

or in terms of the RMS value and phase shift

Irms =
1

R
Vrms

ϕ = 0
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Inductive loads

For purely inductive loads, e.g. a motor during start-up

V (t) = L
dI (t)

dt

and thus for a voltage of V (t) =
√

2Vrmse
jωt we get

I (t) =
√

2
Vrms

jωL
e jωt =

1

jωL
V (t)

or in terms of the RMS value and phase shift

Irms =
1

ωL
Vrms

ϕ =
π

2

We write XL = ωL for the inductive reactance, in analogy to the

resistance.
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Capacitive loads

For purely capacitive loads we have

C
dV (t)

dt
= I (t)

and thus for a voltage of V (t) =
√

2Vrmse
jωt we get

I (t) =
√

2jωCVrmse
jωt = jωCV (t)

or in terms of the RMS value and phase shift

Irms = ωCVrms

ϕ = −π
2

We write XC = 1
ωC for the capacitive reactance.
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General loads

General loads will have a combination of resistive, capacitive and

inductive parts. For an RLC circuit in series the voltage across the

components is additive

V (t) = RI (t) + L
dI (t)

dt
+

1

C

∫ t

−infty
I (τ)dτ

and therefore for a sinuisoidal voltage with angular frequency ω we get

V (t) =

[
R + jωL +

1

jωC

]
I (t)

which leads us to define a general complex notion of resistance called

impedance

Z = R + jωL +
1

jωC
= R + j(XL − XC ) = R + jX

where X is the reactance X = XL − XC .
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Impedances and admittances

Thus for a regular sinuisodal setup we have

V (t) = ZI (t)

where the complex impedance takes care both of the relation of the

RMS values of the current and the voltage, and their phase difference.

We can decompose Z into real resistance R and real reactance X

Z = R + jX

The inverse impedance, called the admittance is given by

Y =
1

Z

so that

I (t) = YV (t)

We can also decompose this into real conductance G and real

susceptance B

Y = G + jB
13



Simple transmission line

A simple model for a transmission line ` between nodes i and j is a

resistance R in series with an (inductive) reactance X .

[Typical values are for a 380 kV overhead transmission line e.g.

R = 0.03 Ohm/km and X = 0.3 Ohm/km.]

The voltage at each node (compared to ground) is given by

Vi (t) =
√

2Vie
j(ωt+θi ) where θi is the phase offset for each node and Vi

is the RMS voltage magnitude.

Now the current in the transmission line is given by

I (t) =
1

R + jX
[Vj(t)− Vi (t)] =

1

R + jX

√
2Vie

j(ωt+θi )

[
Vj

Vi
e j(θj−θi ) − 1

]
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Active versus reactive power

Now let’s consider the power injection at the first node. This is simply

the voltage there multiplied by the current in the transmission line.

It’s convenient to eliminate the time-dependent part e jωt by multiplying

the voltage with the complex conjugate of the current

S = P + jQ =
1

2
V (t)I ∗(t)

For a resistive load with V (t) = RI (t) this reproduces the active power

P.

For loads where the I (t) is not in phase with the voltage, we get a flow

of reactive power Q.

S = P + jQ is called the apparent power.
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Linearisation: Assumption 1/3

Now if we consider the power injected at the first node we get

Pi + jQi =
1

R + jX
V 2
i

[
Vj

Vi
e j(θi−θj ) − 1

]
This is the full non-linear equation for the power flow. Now let’s linearise

by making some simplifying assumptions.

1. Assume the voltage magnitudes are the same everywhere in the

network Vi = Vj

Pi + jQi =
1

R + jX
V 2
i

[
e j(θi−θj ) − 1

]
This means power flows primarily according to angle differences in

this approximation.
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Linearisation: Assumption 2/3

2. Now assume that the voltage angle differences across the transmission

line are small enough that sin(θi − θj) ∼ (θi − θj)

Pi + jQi =
1

R + jX
V 2
i

[
e j(θi−θj ) − 1

]
∼ 1

R + jX
V 2
i [j(θi − θj)]

This assumption is usually valid, since for stability reasons, we usually

have in the transmission network (θi − θj) ≤ π
6 (30 degrees).
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Linearisation: Assumption 3/3

3. Finally we assume R << X so that we can ignore the resistance R

Pi + jQi =
1

R + jX
V 2
i [j(θi − θj)]

∼ 1

jX
V 2
i [j(θi − θj)]

=
V 2
i

X
(θi − θj)

Note that ignoring R means that we ignore resistive losses in the

transmission lines and also since Qi ∼ 0, we ignore the flow of reactive

power. Finally we absorb the voltage into the definition of the per unit

reactance x` = X
V 2
i

to get

f` = Pi = −Pj =
θi − θj
x`
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Three-phase power

Electricity is generally generated simultaneously in 3 separate circuits

separate by 120 degrees or 2π
3

In your plug, you only see one phase, but your oven may use all three

phases. 19

Source: Wikipedia



Three-phase power

Why three phases? This was settled in the late 1880s.

1. The total power delivery is constant

d

dt
P(t) =

d

dt
[Pa(t) + Pb(t) + Pc(t)] = 0

This reduces mechanical stress on generators and motors.

2. The sum of voltages and currents is zero, so no return path required!

Saving on materials.

Both facts follow from
N−1∑
k=0

e j
2πk
N = 0

for N > 1.

3. Why N = 3 rather than N = 2? Allows directional rotating fields for

induction motors (thanks Tesla!).

20



Rotating field in a three-phase induction motor

A brilliant insight (credited to Tesla, but the history is complicated) was

that with three-phase power, you can place your wires spaced at 2π/3 to

create a rotating magnetic field

https://www.youtube.com/watch?v=LtJoJBUSe28

which can then induce a current in a rotor cage, which then experiences a

torque thanks to the magnetic field: this is the principle of the induction

motor.

It would not be possible to create such a rotating field with a

single-phase or two-phase system.

21

https://en.wikipedia.org/wiki/Induction_motor#History
https://www.youtube.com/watch?v=LtJoJBUSe28


Three-phase power

22

Source: Wikipedia



Computing the Linear Power Flow



The goal of power flow analysis

The goal of a power/load flow analysis

is to find the flows in the lines of a

network given a power injection pattern

at the nodes.

I.e. given power injection at the nodes

Pi =


50

50

0

−100


what are the flows in lines 1-4?

To find the flows, it is sufficient to know

the impedances of the lines and the

voltages at each node.
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Framing the load flow problem

Suppose we have N nodes labelled by i , and L edges labelled by `

forming a directed graph G .

Suppose at each node we have a power imbalance pi (pi > 0 means its

generating more than it consumes and pi < 0 means it is consuming

more than it).

Since we cannot create or destroy energy (and we’re ignoring losses):∑
i

pi = 0

Question: How do the flows f` in the network relate to the nodal power

imbalances?

Answer: According to the impedances (generalisation of resistance for

oscillating voltage/current) and the corresponding voltages.

25



Kirchhoff’s Current Law (KCL)

KCL says (in this linear setting) that the nodal power imbalance at node

i is equal to the sum of direct flows arriving at the node. This can be

expressed compactly with the incidence matrix

pi =
∑
`

Ki`f` ∀i
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Kirchhoff’s Voltage Law (KVL)

KVL says that the sum of voltage differences across edges for any closed

cycle must add up to zero.

If the voltage at any node is given by θi (this is infact the voltage angle -

more next week) then the voltage difference across edge ` is∑
i

Ki`θi

And Kirchhoff’s law can be expressed using the cycle matrix encoding of

independent cycles∑
`

C`c
∑
i

Ki`θi = 0 ∀c

[Automatic, since we already said KC = 0.]
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Kirchhoff’s Voltage Law (KVL)

If we express the flow on each line in terms of the voltage angle (a

relative of V = IR) then for a line ` with reactance x`

f` =
θi − θj
x`

=
1

x`

∑
i

Ki`θi

KVL now becomes ∑
`

C`cx`f` = 0 ∀c
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Solving the equations

If we combine

f` =
1

x`

∑
i

Ki`θi

with Kirchhoff’s Current Law we get

pi =
∑
`

Ki`f` =
∑
`

Ki`
1

x`

∑
j

Kj`θj

This is a weighted Laplacian. If we write Bk` for the diagonal matrix

with B`` = 1
x`

then

L = KBK t

and we get a discrete Poisson equation for the θi sourced by the pi

pi =
∑
j

Lijθj

We can solve this for the θi and thus find the flows.
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Solving the equations

Given pi at every node, we want to find the flows f`. We have the

equations

pi =
∑
j

Lijθj

f` =
1

x`

∑
i

Ki`θi

Basic idea: invert L to get θi in terms of pi

θi =
∑
k

(L−1)ikpk

then insert to get the flows as a linear function of the power injections pi

f` =
1

x`

∑
i,k

Ki`(L
−1)ikpk =

∑
k

PTDF`kpk
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Inverting Laplacian L

There is one small catch: L is not invertible since we saw last time it

has (for a connected network) one zero eigenvalue, with eigenvector

(1, 1, . . . 1), since by construction
∑

j Lij = 0.

This is related to a gauge freedom to add a constant to all voltage angles

θi → θi + c

which does not affect physical quantities:

pi =
∑
j

Lij(θj + c) =
∑
j

Lij(θj)

f` =
1

x`

∑
i

Ki`(θi + c) =
1

x`

∑
i

Ki`(θi )

Typically choose a slack or reference bus such that θ0 = 0.
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Inverting Laplacian L

Two solutions:

1. Set θ0 = 0, invert the lower-right (N − 1)× (N − 1) part of L to find

the remaining {pi}i=1,...N−1 in terms of the {θi}i=1,...N−1, then derive p0

from
∑

i pi = 0.

2. Use the Moore-Penrose pseudo-inverse.

Write L in terms of its basis of orthonormal eigenvectors

L =
∑
n

|Φn〉λn 〈Φn|

then the Moore-Penrose pseudo-inverse is:

L† =
∑

n|λn 6=0

|Φn〉 〈Φn|
λn

32



4-node example

Ki` =


1 0 0 0

−1 1 1 0

0 −1 0 1

0 0 −1 −1



Lij =


1 −1 0 0

−1 3 −1 −1

0 −1 2 −1

0 −1 −1 2



PTDF`i =


0 −1 −1 −1

0 0 −2/3 −1/3

0 0 −1/3 −2/3

0 0 1/3 −1/3


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PTDF as sensitivity

Can also ‘experimentally’ determine the Power Transfer Distribution

Factors (PTDF) by choosing a slack bus (in this case bus 1).

Each column (labelled by i) is then the resulting line flows if we have a

simple power transfer from bus i to the slack pi = 1 and p1 = −1.

PTDF`i =


0 −1 −1 −1

0 0 −2/3 −1/3

0 0 −1/3 −2/3

0 0 1/3 −1/3


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Consequences of limiting power trans-

fers



Line loading limits

You cannot pass infinite current through a transmission line.

As it warms, it sags, then it will become damaged and/or hit a

building/tree and cause a short-circuit. For this reasons there are always

thermal limits on current transfer. There may also be limits on the

amount of power or current based on concerns about voltage stability or

general stability.

Typically each line has a well-defined line loading limit on the amount

of current or power that can flow through it:

|f`| ≤ F`

These limits prevent the transfer of renewable energy or other power

sources.
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Adjusting generator dispatch to avoid overloading

To avoid overloading the power lines, we must adjust our generator

output (or the demand) so that the power imbalances do not overload

the network.

We will now generalise and adjust our notation.

From lecture 2 we had for a single node:

−pt = mt − bt + ct = dt −Wwt − Sst − bt + ct = 0

where pt was the nodal power balance, mt was the mismatch (load dt
minus wind Wwt and solar Sst), bt was the backup power and ct was

curtailment.

We generalised this to multiple nodes labelled by i

−pi,t = mi,t − bi,t + ci,t = di,t −Wiwi,t − Si si,t − bi,t + ci,t

where now we don’t enforce pi,t = 0 but
∑

i pi,t = 0 for all t.
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Adjusting generator dispatch to avoid overloading

Now we write the dispatch of all generators at node i (wind, solar,

backup) labelled by technology s as gi,s,t (i labels node, s technology

and t time) so that we have a relation between load di,t , generation gi,s,t
and network flows f`,t

pi,t =
∑
s

gi,s,t − di,t =
∑
`

Ki`f`,t

Where s runs over the wind, solar and backup capacity generators (e.g.

hydro or natural gas) at the node.

A dispatchable generator’s gi,s,t output can be controlled within the

limits of its power capacity Gi,s

0 ≤ gi,s,t ≤ Gi,s
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Variable generation constraints

For a renewable generator we have time series of availability

0 ≤ Gi,s,t ≤ 1 (the st and wt before; W and S are the capacity Gi,s):

0 ≤ gi,s,t ≤ Gi,s,tGi,s ≤ Gi,s

Curtailment corresponds to the case where gi,s,t < Gi,s,tGi,s :

gi,s,t

Gi,s,tGi,s

Gi,s
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Germany curtailment example

See https://pypsa.org/examples/scigrid-lopf-then-pf.html.
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European transmission versus backup energy

Consider backup energy in a simplified European grid:

Transmission lines

Country nodes
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DE versus EU backup energy from last time

Germany needed backup generation for 31% of total load:
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European transmission versus backup energy

Transmission needs across a fully renewable European power system by

Rodriguez, Becker, Andresen, Heide, Greiner, Renewable Energy, 2014
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http://www.sciencedirect.com/science/article/pii/S0960148113005351
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