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Optimisation Revision



Optimisation problem

We have an objective function f : Rk → R

max
x

f (x)

[x = (x1, . . . xk)] subject to some constraints within Rk :

gi (x) = ci ↔ λi i = 1, . . . n

hj(x) ≤ dj ↔ µj j = 1, . . .m

λi and µj are the KKT multipliers (basically Lagrange multipliers) we

introduce for each constraint equation; it measures the change in the

objective value of the optimal solution obtained by relaxing the constraint

(shadow price).
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KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions

that an optimal solution x∗, µ∗, λ∗ always satisfies (up to some regularity

conditions):

1. Stationarity: For l = 1, . . . k

∂L
∂xl

=
∂f

∂xl
−
∑
i

λ∗i
∂gi
∂xl
−
∑
j

µ∗j
∂hj
∂xl

= 0

2. Primal feasibility:

gi (x
∗) = ci

hj(x
∗) ≤ dj

3. Dual feasibility: µ∗j ≥ 0

4. Complementary slackness: µ∗j (hj(x
∗)− dj) = 0
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min/max and signs

If the problem is a maximisation problem (like above), then µ∗j ≥ 0

since µj = ∂L
∂dj

and if we increase dj in the constraint hj(x) ≤ dj , then the

feasible space can only get bigger. Since if X ⊆ X ′

max
x∈X

f (x) ≤ max
x∈X ′

f (x)

then the objective value at the optimum point can only get bigger, and

thus µ∗j ≥ 0. (If dj →∞ then the constraint is no longer binding, if

dj → −∞ then the feasible space vanishes.)

If however the problem is a minimisation problem (e.g. cost

minimisation) then we can use

min
x∈X

f (x) = −max
x∈X

[−f (x)]

We can keep our definition of the Lagrangian and almost all the KKT

conditions, but we have a change of sign µ∗j ≤ 0, since

min
x∈X

f (x) ≥ min
x∈X ′

f (x)

The λ∗i also change sign. 6



Welfare maximisation revision



KKT and Welfare Maximisation 1/2

Apply KKT now to maximisation of total economic welfare:

max
{db},{gs}

f ({db}, {gs}) =

[∑
b

Ub(db)−
∑
s

Cs(gs)

]
subject to the balance constraint:

g({db}, {gs}) =
∑
b

db −
∑
s

gs = 0 ↔ λ

and any other constraints (e.g. limits on generator capacity, etc.).

Our optimisation variables are {x} = {db} ∪ {gs}.

We get from stationarity:

0 =
∂f

∂db
−
∑
b

λ∗
∂g

∂db
= U ′b(db)− λ∗ = 0

0 =
∂f

∂gs
−
∑
s

λ∗
∂g

∂gs
= −C ′s(gs) + λ∗ = 0
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KKT and Welfare Maximisation 2/2

So at the optimal point of maximal total economic welfare we get the

same result as if everyone maximises their own welfare separately:

U ′b(db) = λ∗

C ′s(gs) = λ∗

This is the CENTRAL result of microeconomics.

If we have further inequality constraints that are binding, then these

equations will receive additions with µ∗i > 0.
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Optimise Single Node with Inelastic

Demand, Linear Generation Costs



Supply-demand linear example: generator bids

Example from Kirschen and Strbac pages 56-58.

The following generators bid into the market for the hour between 0900

and 1000 on 20th April 2016:

Company Quantity [MW] Price [$/MWh]

Red 200 12

Red 50 15

Red 150 20

Green 150 16

Green 50 17

Blue 100 13

Blue 50 18
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Supply-demand linear example: Consumer offers

The following consumers make offers for the same period:

Company Quantity [MW] Price [$/MWh]

Yellow 50 13

Yellow 100 23

Purple 50 11

Purple 150 22

Orange 50 10

Orange 200 25
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Supply-demand example: Curve

If the bids and offers are stacked up in order, the supply and demand

curves meet with a demand of 450 MW at a system marginal price of

λ = 16 $/MWh.
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Source: Kirschen & Strbac



Supply-demand example: Revenue and Expenses

Dispatch and revenue/expense of each company:

Company Production Consumption Revenue Expense

[MWh] [MWh] [$] [$]

Red 250 4000

Blue 100 1600

Green 100 1600

Orange 200 3200

Yellow 100 1600

Purple 150 2400

Total 450 450 7200 7200
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Simplified world: linear generation costs, inelastic demand

We will now turn to an even simpler world: all the generator cost

functions are linear

Cs(gs) = osgs

and each generator has limited output 0 ≤ gs ≤ Gs .

We also fix the demand to a value D so that it does not respond to price

changes (i.e. the demand is inelastic) up to a very high marginal utility

V >> os ∀s, i.e.

U(d) = Vd

for d ≤ D.

V is sometimes called the Value Of Lost Load (VOLL).
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Simplify representation of consumers and generators

In this case we get for our welfare maximisation:

max
d,{gs}

[
Vd −

∑
s

osgs

]

subject to:

d −
∑
s

gs = 0 ↔ λ

d ≤ D ↔ µ

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s
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Simplest example: one generator type, inelastic demand

Suppose all generators have the same marginal cost o and we represent

their total dispatch by g and total capacity by G

max
d,g

[Vd − og ]

such that:

d − g = 0 ↔ λ

d ≤ D ↔ µ

g ≤ G ↔ µ̄

−g ≤ 0 ↔ µ
¯
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Simplest example: one generator type, inelastic demand

If D < G then since V >> o, it will be always profitable for the

generators to dispatch to satisfy the load, i.e.

g∗ = d∗ = D

If the demand is non-zero then since g∗ > 0 by complementarity we have

µ
¯

∗ = 0. Since D < G then g∗ < G and by complementarity we have

µ̄∗ = 0. To compute λ∗ we use stationarity:

0 =
∂L
∂g

=
∂f

∂g
−
∑
i

λ∗i
∂gi
∂g
−
∑
j

µ∗j
∂hj
∂g

= −o + λ∗ − µ̄∗ + µ
¯

∗

Thus λ∗ = o, which is the cost per unit of supplying extra demand. The

generator sets the price.

For the load µ∗ can be non-zero because d∗ = D:

0 =
∂L
∂d

=
∂f

∂d
−
∑
i

λ∗i
∂gi
∂d
−
∑
j

µ∗j
∂hj
∂d

= V − λ∗ − µ∗

µ∗ = V − λ∗ is the marginal benefit of each increase in demand.
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Simplest example: one generator type, inelastic demand

If D > G then the generator will dispatch up to its maximum capacity

g∗ = d∗ = G

For its lower limit we have µ
¯

∗ = 0. From stationarity:

0 =
∂L
∂g

=
∂f

∂g
−
∑
i

λ∗i
∂gi
∂g
−
∑
j

µ∗j
∂hj
∂g

= −o + λ∗ − µ̄∗ + µ
¯

∗

Thus λ∗ = o + µ̄∗. To find λ∗ we have to look at the demand:

0 =
∂L
∂d

=
∂f

∂d
−
∑
i

λ∗i
∂gi
∂d
−
∑
j

µ∗j
∂hj
∂d

= V − λ∗ − µ∗

Since d∗ < D, µ∗ = 0, λ∗ = V and thus µ̄∗ = V − o, the marginal

benefit of extending the generator The demand sets the price.
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Next simplest example: several generators, fixed demand

Suppose we have several generators with dispatch gs and strictly ordered

operating costs os such that os < os+1. We now maximise

max
{d,gs}

[
Vd −

∑
s

osgs

]

such that

d −
∑
s

gs = 0 ↔ λ

d ≤ D ↔ µ

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s
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Next simplest example: several generators, fixed demand

Stationarity gives us for each s:

0 = −os + λ∗ − µ̄∗s + µ
¯

∗
s

and from complementarity we get

µ̄s(g∗s − Gs) = 0

µ
¯s
g∗s = 0

We can see by inspection that we will dispatch the cheapest generation

first. Suppose that we have enough generation for the demand, i.e.

D <
∑

s Gs . [If D >
∑

s Gs we have the same situation as for a single

generator, i.e. λ∗ = V , so that the demand sets the price.]

Find m such that
∑m−1

s=1 Gs < D <
∑m

s=1 Gs .

For s ≤ m − 1 we have g∗s = Gs , µ
¯

∗
s

= 0, µ̄∗s = λ∗ − os .

For s = m we have g∗m = D −
∑m−1

s=1 Gs to cover what’s left of the

demand. Since 0 < g∗m < Gm we have µ
¯

∗
m

= µ̄∗m = 0 and thus λ∗ = om.
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Next simplest example: several generators, fixed demand

Specific example of two generators with G1 = 300 MW, G2 = 400 MW,

o1 = 10 e/MWh, o2 = 30 e/MWh and D = 500 MW.

In this case m = 2, g∗1 = G1 = 300 MW, g∗2 = d − G1 = 200 MW,

λ∗ = o2, µ
¯i

= 0, µ̄2 = 0 and µ̄1 = o2 − o1.
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From welfare maximisation to cost minimisation

For the case D >
∑

s Gs we can instead imagine that the demand is

rigidly fixed to D and that instead we have a dummy generator with

dispatch gd = D −
∑

s Gs that represents load shedding.

In this case we can substitute d = D − gd to get

max
{gd ,gs}

[
VD − Vgd −

∑
s

osgs

]
such that

D − gd −
∑
s

gs = 0 ↔ λ

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s

Since VD is a constant, we can use maxx∈X [−f (x)] = −minx∈X f (x) to

recast this as a minimisation of the total generator costs, absorbing gd
into the set {gs}. The constant VD is dropped.
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From welfare maximisation to cost minimisation

We have turned the maximisation of total welfare into cost

minimisation:

min
{gs}

∑
s

osgs

such that: ∑
s

gs − d = 0 ↔ λ

gs ≤ Gs ↔ µ̄s

−gs ≤ 0 ↔ µ
¯s

The most expensive generator has os = V and Gs =∞ and represents

load shedding.

We’ve replaced the symbol D with d for simplicity going forward.

NB: Because the signs of the KKT multipliers change when we go from

maximisation to minimisation, we’ve also changed the sign of the balance

constraint to keep the marginal price λ positive. 24



Optimise nodes in a network



Welfare optimisation for several nodes in a network

Now let’s suppose we have several nodes i with different loads and

different generators, with flows f` in the network lines.

Now we have additional optimisation variables f` AND additional

constraints for welfare maximisation:

max
{di,b},{gi,s},{f`}

∑
i,b

Ui,b(di,b)−
∑
i,s

Ci,s(gi,s)


such that demand is met either by generation or by the network at each

node i ∑
b

di,b −
∑
s

gi,s +
∑
`

Ki`f` = 0 ↔ λi

and generator constraints are satisified

gi,s ≤ Gi,s ↔ µ̄i,s

−gi,s ≤ 0 ↔ µ
¯i,s
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Cost minimisation at several nodes in a network

For cost minimisation we have a fixed load di at each node, and absorb

load-shedding above a value V into a dummy generator.

Now we minimise over gi,s and f`:

min
{gi,s},{f`}

∑
i,s

oi,sgi,s

such that demand is met either by generation or by the network at each

node i ∑
s

gi,s − di =
∑
`

Ki`f` ↔ λi

and generator constraints are satisified

gi,s ≤ Gi,s ↔ µ̄i,s

−gi,s ≤ 0 ↔ µ
¯i,s
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Several generators at different nodes in a network

In addition we have constraints on the line flows.

First, they have to satisfy Kirchoff’s Voltage Law around each closed

cycle c : ∑
c

C`cx`f` = 0 ↔ λc

and in addition the flows cannot overload the thermal limits, |f`| ≤ F`

f` ≤ F` ↔ µ̄`

−f` ≤ F` ↔ µ
¯`
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Simplest example: two nodes connected by a single line

At node 1 we have demand of d1 = 100 MW and a generator with costs

o1 = 10 e/MWh and a capacity of G1 = 300 MW.

At node 2 we have demand of d2 = 100 MW and a generator with costs

o1 = 20 e/MWh and a capacity of G2 = 300 MW.

What happens if the capacity of the line connecting them is F = 0?

What about F = 50 MW?

What about F =∞?

See example on board.
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Simplest example: two nodes connected by a single line

1

f

2

d1 g1

g1 − d1 = f ↔ λ1

d2 g2

g2 − d1 = −f ↔ λ2

Objective function is ming1,g2,f [o1g1 + o2g2] subject to:

g1 ≤ G1 ↔ µ̄1

−g1 ≤ 0 ↔ µ
¯1

g2 ≤ G2 ↔ µ̄2

−g2 ≤ 0 ↔ µ
¯2

f ≤ F ↔ µ̄

−f ≤ F ↔ µ
¯
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Two nodes: Case F = 0

For the case F = 0 the nodes are like two separated islands, f ∗ = 0.

The generator on each island provides the demand separately, so:

g∗1 = d1 and g∗2 = d2

Neither generator has any binding constraints, since in each case the

demand (100 MW) is less than the generator capacity (300 MW), so

µ̄∗1 = µ
¯

∗
1

= µ̄∗2 = µ
¯

∗
2

= 0

From stationarity for each site we get

0 =
∂L
∂gi

= oi − λ∗i − µ̄∗i + µ
¯

∗
i

Thus we have at each site λ∗i = oi .
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Two nodes: Case F = 50 MW

For the case F =50 MW the cheaper node 1 will export to the more

expensive node 2 as much as the restricted capacity F allows:

f ∗ = F = 50 MW

Generator 1 covers 50 MW of the demand from node 2:

g∗1 = d1 + f ∗ and g∗2 = d2 − f ∗

Neither generator has any binding constraints, so

µ̄∗1 = µ
¯

∗
1

= µ̄∗2 = µ
¯

∗
2

= 0

and thus we have again different prices at each λi = oi . For the flow:

0 =
∂L
∂f

= 0 + λ∗1 − λ∗2 − µ̄∗ + µ
¯

∗

Only the upper limit is binding, so we get µ
¯

∗ = 0 and

µ̄∗ = λ∗1 − λ∗2 = −10EUR/MWh
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Two nodes: Case F =∞

For the case F =∞ we have unrestricted capacity, so it is like merging

the two nodes to one node. Now all the demand is covered by the

cheapest node:

f ∗ = d2 = 100 MW

Generator 1 covers all the demand:

g∗1 = d1 + d2 and g∗2 = 0

Only generator 2 has a non-zero KKT multiplier, so at node 1 we have

λ∗1 = o1 and at node 2 we have:

µ
¯

∗
2

= λ∗2 − o2

From KKT for the flow f we have no constraints so

0 =
∂L
∂f

= 0 + λ∗1 − λ∗2 − µ̄∗ + µ
¯

∗

i.e. λ∗1 = λ∗2 . We have price equalisation, as if it were a single node.
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Congestion rent

Due to the congestion of the transmission line, the marginal cost of

producing electricity can be different at node 1 and node 2. The

competitive price at node 2 is higher than at node 1 – this corresponds to

locational marginal pricing, or nodal pricing.

Since consumers pay and generators get paid the price in their local

market, in case of congestion there is a difference between the total

payment of consumers and the total revenue of producers – this is the

merchandising surplus or congestion rent, collected by the market

operator. For each line it is given by the price difference in both regions

times the amount of power flow between them:

Congestion rent = ∆λ× f
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Congestion rent: Two node example

Returning to our two node example:

Case Demand pays Generator gets λ∗2 − λ∗1 flow f Cong. rent

[e/h] [e/h] [e/MWh] [MW] [e/h]

F = 0 3000 3000 0 0 0

F = 50 3000 2500 10 50 500

F =∞ 2000 2000 0 100 0

To get a congestion rent, we need congestion to cause a price difference

between the nodes, as well as a non-zero flow between the nodes.
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Congestion rent

In this example we saw that the sum of what consumers pay does not

always equal the sum of generator revenue.

In fact if we take the balance constraint and sum it weighted by the

market price at each node we find∑
i

λ∗i di −
∑
i

λ∗i
∑
s

g∗i,s = −
∑
i

λ∗i
∑
`

Ki`f
∗
`

The quantity for each `

−f ∗`
∑
i

Ki`λ
∗
i = f`(λ

∗
end − λ∗start)

is called the congestion rent and is the money the network operator

receives for transferring power from a low price node (start) to a high

price node (end), ‘buy it low, sell it high’.

It is zero if: a) the flow is zero or b) the price difference is zero.
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The European Market



Existing bidding zones

• Bids for German electricity take

place in a giant bidding zone

encompassing both Austria and

Germany (Austria will be separated

from October 2018)

• This means that transmission

constraints are only visible to the

market at the borders to the other

national zones

• Internal transmission constraints are

ignored - market bids are handled

as if they do not exist

• Only KCL enforced - KVL

impossible
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The Problem

Renewables are not always located near demand centres, as in this

example from Germany.
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The Problem

• This leads to overloaded lines in

the middle of Germany, which

cannot transport all the wind

energy from North Germany to the

load in South Germany

• It also overloads lines in

neighbouring countries due to loop

flows (unplanned physical flows

‘according to least resistance’ which

do not correspond to traded flows)

• It also blocks imports and

exports with neighbouring

countries, e.g. Denmark
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Solution 1: Redispatch after energy market clearing

These problems are not visible in the day-ahead electricity market, which

treats the whole of Germany and Austria as a single bidding zone. It

dispatches wind in North Germany as if there was no internal

congestion...

To ensure that the physical limits of transmission are not exceeded, the

network operator must ‘re-dispatch’ power stations and curtail

(Einspeisemanagement) renewables to restore order. This is costly (0.8

redispatch + 0.6 RE-compensation = 1.4 billion EUR in 2017 - although

exceptional circumstances in 1st quarter) and results in lost CO2-free

generation (5.5 TWh curtailment of RE and CHP in 2017).

International redispatch is sometimes also required (Multilateral

Remedial Actions = MRA).

Furthermore, there are no market incentives to reinforce the

North-South grid, to locate more power stations in South Germany or to

build storage / P2X in North Germany.
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Solution 2: Smaller bidding zones to “see” congested

boundaries

• In Scandinavia they have

solved this by introducing

smaller bidding zones

• Now congestion at the

boundaries between zones is

taken into account in the

implicit auctions of the

market

• This is also done in Italy

(again, a long country),

where prices for small

consumers are uniformised

for fairness
42



Solution 3: Nodal pricing

• The ultimate solution, as

used in the US and other

markets, is nodal pricing,

which exposes all

transmission congestion

• Considered too complex and

subject to market power to

be used in Europe, but this

is questionable...

• Here we see clearly why

many argue for a

North-South German split
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First step: Split Germany North-South

• Initial price difference could average

up to 12 EUR/MWh

• Prices would converge with more

network expansion

• Redispatch costs reduced by 39% in

2025, 58% in 2035 (assuming NEP

2030 transmission projects get

built)

• Politically difficult, may require, like

Italy, uniformised price on consumer

side

44

Source: Fraunholz & Hladik, 2018

https://www.strommarkttreffen.org/2018-02_Fraunholz&Hladik_Zwei_Preiszonen_in_D.pdf


Solution 1.5: Flow-based market coupling

Flow-based market coupling can be used in zonal markets to see precise

individual line constraints, instead of “boxing” the feasible space like

ATC/NTC schemes do.

45

Source: Van den Bergh, Boury, Delarue



Storage Optimisation



Storage equations

Now, like the network case where we add different nodes i with different

loads, for storage we have to consider different time periods t.

Label conventional generators by s, storage by r and now minimise

min
{gi,s,t},{gi,r,t,store},{gi,r,t,dispatch},{f`,t}∑
i,s,t

oi,sgi,s,t +
∑
i,r ,t

oi,r ,store gi,r ,t,store +
∑
i,r ,t

oi,r ,dispatch gi,r ,t,dispatch


The power balance constraints are now (cf. Lecture 4) for each node i

and time t that the demand is met either by generation, storage or

network flows:∑
s

gi,s,t +
∑
r

(gi,r ,t,dispatch − gi,r ,t,store)− di,t =
∑
`

Ki`f`,t ↔ λi,t

47



Storage equations

We have constraints on normal generators

0 ≤ gi,s,t ≤ Gi,s

and on the storage

0 ≤ gi,r ,t,dispatch ≤ Gi,r ,dispatch

0 ≤ gi,r ,t,store ≤ Gi,r ,store

The energy level of the storage is given by

ei,r ,t = η0ei,r ,t−1 + η1gi,r ,t,store − η−12 gi,r ,t,dispatch

and limited by

0 ≤ ei,r ,t ≤ Ei,r
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Idea of storage

Storage does ‘buy it low, sell it high’ arbitrage, like network, but in time

rather than space, i.e. between cheap times (e.g. with lots of

zero-marginal-cost renewables) and expensive times (e.g. with high

demand, low renewables and expensive conventional generators).
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Storage plus network equations

Finally for the flows we repeat the constraints for each time t.

We have KVL for each cycle c and time t∑
c

C`cx`f`,t = 0 ↔ λc,t

and in addition the flows cannot overload the thermal limits, |f`,t | ≤ F`

f`,t ≤ F` ↔ µ̄`,t

−f`,t ≤ −F` ↔ µ
¯`,t
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Preview: Investment optimisation

Preview for next time:

Next time we will also optimise investment in the capacities of

generators, storage and network lines, to maximise long-run efficiency.

We will promote the capacities Gi,s , Gi,r ,∗, Ei,r and F` to optimisation

variables.
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