
Energy System Modelling

Summer Semester 2019, Lecture 8

Dr. Tom Brown, tom.brown@kit.edu, https://nworbmot.org/

Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI)

14th June 2019

mailto:tom.brown@kit.edu
https://nworbmot.org/


Table of Contents

1. Present value and discounting

2. Investment calculations

3. Levelised Cost Of Electricity (LCOE)

4. Duration Curves and Capacity Factors: Examples from Germany in 2015

5. Investment Optimisation: Generation

6. Investment Optimisation: Transmission

1



Present value and discounting



The value of money depends on time

Question 1: What would you prefer: e1000 today, or e1000 in 3 years?

e1000 today can be invested in the bank with an interest rate of 5%.

After 3 years you would have

1000 · (1 + 0.05)3 = 1158

Answer 1: Best to take the money today and use the opportunity to invest!

“Money in the future is worth less than money today.”
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The value of money depends on time

Question 2: What would you prefer: e1000 today, or e1300 in 5 years?

If you invested e1000 today, after 5 years you would have only

1000 · (1 + 0.05)5 = 1276

Answer 2: Best to wait for the e1300 in 5 years!
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Present value

To allow comparison between income and outgoings in different years, we need to agree on a

particular point in time to evaluate the cash flows.

The simplest and most frequently used time point: today’s value, known as the present value.

For an interest rate r we multiply the income or outgoings in year t by the discount factor

1

(1 + r)t

to calculate the present value. We have discounted the future cash flow.

Future income or outgoings are worth less from today’s point of view (as long as r is positive).

“Money in the future is worth less than money today.”
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Example: present value

For our example with interest rate 5% we can now order the options:

Income (e) Year Present value (e)

1000 3 1000
(1+0.05)3 = 863

1000 0 1000
(1+0.05)0 = 1000

1300 5 1300
(1+0.05)5 = 1019
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Investment calculations



Motivation: Power plant investment

A company is considering investing in a photovoltaic plant on its roof. The key figures:

Size 100 kW

Investment cost 800 ekW−1

Operating cost 20 ekW−1 a−1

Feed-In Tariff 0.1 ekWh−1

Full load hours 1000

Period of subsidy 20 years

The company can invest its money elsewhere for a return of 5%.

Is it worthwhile to invest in the photovoltaic plant?

6Source: Fraunhofer ISE Stromgestehungskosten 2018,

Wikipedia

https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2018_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf
https://de.wikipedia.org/wiki/ENRW_Energieversorgung_Rottweil#/media/Datei:PV_Anlage_auf_der_Rottweiler_Stadthalle.jpg


Investment calculations

An investment calculation quantifies the financial costs and benefits of an investment,

assuming that future income and outgoings can be predicted.

It considers

• Capital costs - Costs for investments and installation

• Consumption costs - Fuel, other materials (e.g. lubricants for wind turbine), etc.

• Operating costs - Maintenance, wages, insurance, management, etc.

• Income - depends on market price, subsidies, and production
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Dynamic investment calculation

For a dynamic investment calculation we sum the present values of all income and outgoings

over the T years of operation taking account of the interest rate r to get the Net Present

Value (NPV):

NPV =
T∑
t=0

−It − Vt − Bt + Ut

(1 + r)t

where It is the capital expenditure in year t, Vt the consumption costs (e.g. for fuel cost ot
and annual production Qt , Vt = ot · Qt), Bt the operating costs und Ut the income (e.g.

average market value λt times annual production Qt , Ut = λt · Qt).

Conclusion: If NPV > 0, the investment is worthwhile.

If NPV < 0, better to invest with a rate of return of r elsewhere.

For comparisons between different investments, a higher NPV should be preferred.
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Example: Rooftop photovoltaic unit

All cash flows (costs and income) in e:

year t 0 1 2 · · · 20

Capital costs It 80.000 0 0 0

Operating costs Bt 0 2.000 2.000 2.000

Income Ut 0 10.000 10.000 10.000

Net cash flow Ut − It − Bt -80.000 8.000 8.000 8.000

Discount factor 1
(1+r)t 1 1

(1+r)
1

(1+r)2
1

(1+r)20
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NPV simplification

If investments only occur in the first year, and the costs and income for the following years are

constant, we can simplify the NPV formula:

NPV = −I0 + (U − V − B)
T∑
t=1

1

(1 + r)t

The sum
∑

is called the Present Value Factor PVF (r ,T ).

For a geometric series with |q| < 1 we have
∑∞

n=0 q
n = 1

1−q . For q = (1 + r)−1 we can

simplify the formula

PVF (r ,T ) =
T∑
t=1

1

(1 + r)t

=

[
1

(1 + r)
− 1

(1 + r)T+1

] ∞∑
t=0

1

(1 + r)t
=

[
1

(1 + r)
− 1

(1 + r)T+1

]
1

1− (1 + r)−1

=

[
1

(1 + r)
− 1

(1 + r)T+1

]
1 + r

1 + r − 1
=

1

r

[
1− 1

(1 + r)T

]
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Example: Rooftop photovoltaic unit

For our example with r = 0.05

NPV = −80.000 + (10.000− 2.000) · 1

r

[
1− 1

(1 + r)T

]
= −80.000 + 8.000 ∗ 12.5

= 19698

Conclusion: It’s worthwile to invest in the photovoltaic unit!

NB: The calculation is very sensitive to the interest rate, e.g. with r = 0.08

NPV = −80.000 + 8.000 ∗ 9.8

= −1.454

Conclusion: The investment is not worthwhile.
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Return On Investment (ROI)

The expected return or Return On Investment (ROI) is the required interest rate to reach

the point NPV = 0.

In our example you can either experiment or use the Newton-Raphson algorithm to determine

the ROI r

0 = NPV = −I0 + (U − V − B)
T∑
t=1

1

(1 + r)t

In our example we find an ROI of r = 7.75%.
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German example figures for electricity production technologies in 2018

WACC is the Weighted Average Cost of Capital over the bank interest rate for borrowed

capital (Fremdkapital) and the investor’s ROI on their own investment (Eigenkapital).

13
Source: Fraunhofer ISE Stromgestehungskosten 2018

https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2018_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf


Warning: Discounting over long time periods

Over long time periods the discounting can have a very large effect....
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Programming example: photovoltaic plant
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Programming example: nuclear plant
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Summary

• Future income or costs are worth less from today’s point of view

• To calculate the present value, multiply the cash flow in year t by the discount factor
1

(1+r)t

• To calculate the net present value (NPV) for an investment, sum the present values of

all income and costs

• If NPV > 0, the investment is worthwhile compared to investing with interest rate r

• For two different investments, a higher NPV should be preferred

• Long-term costs or benefits are suppressed by discounting
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Levelised Cost Of Electricity

(LCOE)



Levelised Cost Of Energy (LCOE)

You can also solve for the market value or feed-in tariff that’s necessary to cover all the costs of

the investment, i.e. the point where the present value of all income balances the present value

of all costs. You solve for the price λ such that

0 = NPV = −I0 + (λQ − oQ − B)PVF (r ,T )

(using V = oQ). We find:

λ =
1

Q

(
I0

PVF (r ,T )
+ B + oQ

)
=

1

Q

(
I0

PVF (r ,T )
+ B

)
+ o

In our example we find a price of λ = 89 e/MWh for i = 0.05.

This value corresponds to the average long-term costs of the unit, since we’ve divided the total

yearly costs by the total production Q. It is called the the Levelised Cost Of Energy (LCOE).

It is also called the Long-Run Marginal Cost (LMRC), since we’ve added to the short-run

marginal cost o an annualised contribution to the capital cost and the operating costs.

Check: The higher I0 or B are, the higher the LCOE. The higher Q is, the lower the LCOE. 18



Annuity

The annuity is the annualised investment cost a = I0
PVF (r ,T ) and a(r ,T ) = 1

PVF (r ,T ) is the

annuity factor, which spreads the capital costs I0 evenly over the operational years of the

investment (like a mortgage for a house).

For a loan I0 from the bank, the bank is compensated for the opportunity cost of investing

elsewhere at a rate of r by an annual fixed sum a so that the NPV for the bank is zero

0 = NPV = −I0 +
T∑
t=0

a

(1 + r)t
= −I0 + PVF (r ,T )

I0
PVF (r ,T )

The formula for the annuity factor is derived from that for the PVF:

a(r ,T ) =
1

PVF (r ,T )
=

r

1− (1 + r)−T

19



Examples of annuity factor

AF = Annuity Factor, a(r ,T )

Lifetime T Discount Rate r AF a(r ,T )

years % per unit

20 0 0.05

20 5 0.08

20 10 0.12

20 20 0.21

40 0 0.025

40 5 0.06

40 10 0.10

40 20 0.20

Things to notice:

• AF reduce to 1/T in limit r → 0

• AF climbs steeply with r

• For long lifetimes, AF is similar to short

lifetimes for high r - in reality investors try to

pay off investments faster than lifetime

• In reality, an investor would provide some

capital themselves, e.g. 10-20% of the capital

cost, and borrow the rest from the bank. The

weighted average of the investor’s desired

internal rate of return and that of the bank

loan is the weighted average cost of capital

(WACC).
20



Parameters for different generation technologies

Here are some typical investment and operational parameters projected for 2020:

Source Lifetime Capital Cost Fix O&M Var O&M η Fuel Cost Marg. Cost

years ekW−1 ekW−1a−1 eMWh−1el [%] e/MWhth e/MWhel

Hard Coal 40 1200 30 6 39 10 32

Gas OCGT 30 400 15 3 39 20 54

Gas CCGT 30 800 20 4 60 20 37

Nuclear 40-60 6000 0 6 33 3.3 16

Wind Onshore 25 1240 35 0 0 0

Solar PV 25 750 25 0 0 0

O&M = Operation and Maintenance, Var. = Variable, Fix. = Fixed, η = efficiency

For a plant with capacity Gs in MW and yearly production Q in MWhel, we have

I0 = 1000 · Gs · (Capital Cost), B = 1000 · Gs · (Fix O&M), V = Q · o where o is the marginal

cost o = (Marg. Cost) = (Var O&M) + (Fuel Cost)/η. 21
Source: DIW Data Documentation, 2013

https://www.diw.de/documents/publikationen/73/diw_01.c.424566.de/diw_datadoc_2013-068.pdf


LCOE for dispatchable generators depends on capacity factor

The LCOE had the form (Marg. Cost) + (Yearly Fixed Costs)/(Yearly Production). Therefore

it decreases with increasing capacity factor:
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LCOE for wind and solar depends on location: worldwide auction results 2017

23
Source: Baringa Partners LLP 2017

https://www.baringa.com/getmedia/99d7aa0f-5333-47ef-b7a8-1ca3b3c10644/Baringa_Scottish-Renewables_UK-Pot-1-CfD-scenario_April-2017_Report_FINA/


Levelised Cost of Electricity Since 2009 in US

NB: Treat with care since LCOE doesn’t take account of time or place of generation!

24
Source: Lazard’s LCOE Analysis V11

https://www.lazard.com/perspective/levelized-cost-of-energy-2017/


Duration Curves and Capacity

Factors: Examples from Germany

in 2015



Load curve

Here’s the electrical demand (load) in Germany in 2015:
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To understand this curve better and its implications for the market, it’s useful to stack the

hours of the year from left to right in order of the amount of load.
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Load duration curve

This re-ordering is called a duration curve.

For the load it’s the load duration curve.
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Nuclear curve

Can do the same for nuclear output:
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Nuclear duration curve

Duration curve is pretty flat, because it is economic to run nuclear almost all the time as

baseload plant:
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The equivalent fraction of time that the plants run at full capacity over the year is the

capacity factor - nuclear has a high capacity factor, usually around 70-90%.
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Gas curve

Can do the same for gas output:
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Gas duration curve

Duration curve is partially flat (for heat-driven CHP) and partially peaked (for peaking plant):
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The capacity factor for gas is much lower - more like 20%.
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Price curve

Can do the same for price during the year:
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Price duration curve

By ordering we get the price duration curve:
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Question

Now we are in a position to consider the questions:

• What determines the distribution of investment in different generation technologies?

• How is it connected to variable costs, capital costs and capacity factors?

We will find the price and load duration curves very useful.

33



Investment Optimisation:

Generation



Investment optimisation

Now we also optimise investment in the capacities of generators, storage and network lines

for the whole system not just a single plant operator, to maximise long-run efficiency.

We will promote the capacities Gi,s , Gi,r ,∗, Ei,r and F` to optimisation variables.

For generation investment, we want to answer the following questions:

• What determines the distribution of investment in different generation technologies?

• How is it connected to variable costs, capital costs and capacity factors?

We will find price and load duration curves very useful.

34



Definition of long-run efficiency

Up until now we have considered short-run equilibria that ensure short-run efficiency (static),

i.e. they make the best use of presently available productive resources.

Long-run efficiency (dynamic) requires in addition the optimal investment in productive

capacity.

Concretely: given a set of options, costs and constraints for different generators

(nuclear/gas/wind/solar) what is the optimal generation portfolio for maximising long-run

welfare?

From an indivdual generators’ perspective: how best should I invest in extra capacity?

We will show again that with perfect competition and no barriers to entry, the system-optimal

situation can be reached by individuals following their own profit.
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Baseload versus Peaking Plant

Load (= Electrical Demand) is low during night; in Northern Europe in the winter, the peak is

in the evening.

To meet this load profile, cheap baseload generation runs the whole time; more expensive

peaking plant covers the difference.
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Different types of generators

Fuel/Prime Marginal Capital Controllable Predictable CO2

mover cost cost days ahead

Oil V. High Low Yes Yes Medium

Gas OCGT High Low Yes Yes Medium

Gas CCGT Medium Medium Yes Yes Medium

Hard Coal Medium Lowish Yes Yes High

Brown Coal Low Medium Yes Yes High

Nuclear V. Low High Partly Yes Zero

Hydro dam Zero High Yes Yes Zero

Wind/Solar Zero High Down No Zero

37



System-optimal generator capacities and dispatch

Suppose we have generators labelled by s at a single node with marginal costs os from each

unit of production gs,t and specific capital costs cs from fixed costs regardless of the rate of

production (e.g. investment in building capacity Gs). For a variety of demand values dt that

occur with probability pt (
∑

t pt = 1) we optimise the total average hourly system costs

min
{gs,t},{Gs}

[∑
s

csGs +
∑
s,t

ptosgs,t

]
such that (rescaling the KKT multipliers by pt to simplify later formulae)∑

s

gs,t = dt ↔ ptλt

−gs,t ≤ 0 ↔ ptµ
¯s,t

gs,t − Gs ≤ 0 ↔ pt µ̄s,t

We will also allow load-shedding with a ‘dummy’ generator s = S , oS = V (Value of Lost

Load), cS = 0 (the capacity to shed load is assumed not to cost anything).
38



Beware units and scaling

We’ve chosen the units here so that the total objective function has units eh−1, the average

hourly system costs.∑
s,t ptosgs,t is the expectation value of the hourly production costs. gs,t has units MW, os has

units e(MWh)−1.

csGs is the investment cost averaged over each hour, i.e. the annuity divided by 8760, a(r ,T )I0
8760

(we can also add the fixed O&M costs B to it). Gs has units MW, cs has units eMW−1h−1.

We could have instead optimised average yearly system costs, then csGs would simply be the

annuity, and instead of weighting with pt such that
∑

t pt = 1, we replace it with a weighting

wt such that
∑

t wt = 8760. In this case, the total objective would have units ea−1.

39



System-optimal generator capacities and dispatch

Stationarity gives us for each s and t:

0 =
∂L
∂gs,t

= pt
(
os − λ∗t − µ̄∗s,t + µ

¯

∗
s,t

)
and for each s:

0 =
∂L
∂Gs

= cs +
∑
t

pt µ̄
∗
s,t

and from complementarity we get

µ̄∗s,t(g
∗
s,t − G∗s ) = 0

µ
¯

∗
s,t
g∗s,t = 0

and dual feasibility (for minimisation) µ̄∗s,t , µ
¯

∗
s,t
≤ 0.

40



System-optimal generator capacities and dispatch

The solution for the dispatch g∗s,t is exactly the same as without capacity optimisation. For

each t, find the generator m where the supply curve intersects with the demand dt , i.e. the m

where
∑m−1

s=1 Gs < dt <
∑m

s=1 Gs .

For s < m we have g∗s,t = G∗s , µ
¯

∗
s,t

= 0, µ̄∗s,t = os − λ∗t ≤ 0.

For s = m we have g∗m,t = dt −
∑m−1

s=1 G∗s to cover what’s left of the demand. Since

0 < g∗m,t < Gm we have µ
¯

∗
m,t

= µ̄∗m,t = 0 and therefore λ∗t = om.

For s > m we have g∗s,t = 0, µ
¯

∗
s,t

= λ∗t − os ≤ 0, µ̄∗s,t = 0.

What about the G∗s ?

41



System-optimal generator capacities and dispatch

The G∗s are determined implicitly based on the interactions between costs and prices.

From stationarity we had the relation

cs = −
∑
t

pt µ̄
∗
s,t

The µ̄∗s,t were only non-zero with λ∗t > os so we can re-write this as

cs =
∑

t|λ∗
t >os

pt(λ
∗
t − os)

‘Increase capacity until marginal increase in profit equals the cost of extra capacity.’

42



Multiple price duration

The optimal mix of generation is where, for each generation type, the area under the

price–duration curve and above the variable cost of that generation type is equal to the fixed

cost of adding capacity of that generation type.

o1

o2

o3

43
Source: Biggar and Hesamzadeh, 2014



Multiple generators with inelastic demand

Assume again we have o1 ≤ o2 ≤ · · · ≤ oS = V and Kp =
∑p

s=1 Gs then:

λt =

{
V for dt > KS−1

os if Ks−1 < dt ≤ Ks , for s = 1, . . .S − 1

Looking at the area under the price duration curve but above the variable cost, we then find:

cs = (V − os)P(d > KS−1) +
S−1∑
j=s+1

(oj − os)P(Kj−1 < d ≤ Kj)

44



Screening curve

These equations can be rewritten recursively using the substitution θs = P(d > Ks):

cS−1 + θS−1oS−1 = V θS−1

cs + θsos = cs+1 + θsos+1 ∀s = 1, . . .S − 2

The first equation can be solved to find θS−1, then the other equations can be solved

recursively to find the remaining θs . The θs correspond to the optimal capacity factors of each

type of generator, which correspond to the fraction of time the generator runs at full power.

45



Screening curve

The costs as a function of the capacity factors can be drawn together as a screening curve

(more expensive options are screened from the optimal inner polygon).

The intersection points determine the optimal capacity factors and hence, using the load

duration curve, the optimal capacities of each generator type.

c2

c1

46
Source: Biggar and Hesamzadeh, 2014



Screening curve versus Load duration

c2

c1
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Source: Biggar and Hesamzadeh, 2014



Example: 2 generation technologies and load shedding

Suppose that electrical demand is inelastic with a demand-duration curve given by

d(x) = 1000− 1000x for 0 ≤ x ≤ 1. Suppose that there are two different types of generation

with variable costs of 2 and 12 e/MWh respectively, together with load-shedding at a cost of

1012 e/MWh. The fixed costs of the two generation types are 15 and 10 e/MWh respectively.

See the below table for a summary of the costs.

Generator os [e/MWh] cs [e/MW/h]

A 2 15

B 12 10

LS 1012 0

48



Example: 2 generation technologies and load shedding

1. What is the interpretation of the demand-duration curve?

2. Below which capacity factor x1 is it cheaper to run Generator B rather than to run

Generator A?

3. Below which capacity factor x0 is it cheaper to shed load than to run Generator B?

4. Plot the costs as a function of x and mark these intersection points on a screening curve.

5. Find the optimal capacities of Generators A and B in this market.

49



Example: 2 generation technologies and load shedding

For the solution see the flipchart photos at

https://nworbmot.org/courses/esm-2018/board/.

To find x1, solve for the intersection of Generator A’s cost curve with Generator B’s cost curve

as a function of capacity factor:

cA + x1oA = cB + x1oB

This gives x1 = 0.5. At this point the demand is d(0.5) = 500 MW therefore

GA = 500 MW

To find x0, solver for where Generator B crosses the load-shedding line:

cB + x0oB = cLS + x0oLS

This gives x0 = 0.01. At this point the demand is d(0.5) = 990 MW so:

GA + GB = 990 MW

i.e. GB = 490 MW and GLS = 10 MW. 50
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Investment optimisation: transmission

As before, our approach to the question of “What is the optimal amount of transmission”

is determined by the most efficient long-term solution, i.e. the infrastructure investement that

maximising social welfare over the long-run.

Promote F` to an optimisation variable with capital cost c`.

In brief: Exactly as with generation dispatch and investment, we continue to invest in

transmission until the marginal benefit of extra transmission (i.e. extra congestion rent for

extra capacity) is equal to the marginal cost of extra transmission. This determines the optimal

investment level.

For the generator case we had cs = −
∑

t pt µ̄
∗
s,t where µ̄∗s,t were the shadow prices of the

constraints gs,t ≤ Gs .

For the transmission line we have f` ≤ F` (µ̄∗`,t) and −f` ≤ F` (µ
¯

∗
`,t

) so we get

c` = −
∑
t

pt
(
µ̄∗`,t + µ

¯

∗
`,t

)
51
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