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Present value and discounting



The value of money depends on time

Question 1: What would you prefer: €1000 today, or €1000 in 3 years?



The value of money depends on time

Question 1: What would you prefer: €1000 today, or €1000 in 3 years?
€1000 today can be invested in the bank with an interest rate of 5%.

After 3 years you would have
1000 - (1 4 0.05)* = 1158

Answer 1: Best to take the money today and use the opportunity to invest!

“Money in the future is worth less than money today.”



The value of money depends on time

Question 2: What would you prefer: €1000 today, or €1300 in 5 years?



The value of money depends on time

Question 2: What would you prefer: €1000 today, or €1300 in 5 years?

If you invested €1000 today, after 5 years you would have only

1000 - (1 + 0.05)> = 1276

Answer 2: Best to wait for the €1300 in 5 years!



Present value

To allow comparison between income and outgoings in different years, we need to agree on a
particular point in time to evaluate the cash flows.

The simplest and most frequently used time point: today’s value, known as the present value.
For an interest rate r we multiply the income or outgoings in year t by the discount factor

1
@+ )y

to calculate the present value. We have discounted the future cash flow.
Future income or outgoings are worth less from today's point of view (as long as r is positive).

“Money in the future is worth less than money today.”



Example: present value

For our example with interest rate 5% we can now order the options:

Income (€) Year Present value (€)

1000
1000 3 o5 = 863
1000 _
1000 0 (riopsp = 1000
1300 5 B0 _ _ 1019

(1+0.05)




Investment calculations



Motivation: Power plant investment

A company is considering investing in a photovoltaic plant on its roof. The key figures:

o
Size 100 kW
Investment cost 800 €kW1
Operating cost 20 €kW—1t a~!
Feed-In Tariff 0.1 €kWh1!
Full load hours 1000
Period of subsidy 20 years

The company can invest its money elsewhere for a return of 5%.

Is it worthwhile to invest in the photovoltaic plant?

Source: Fraunhofer ISE Stromgestehungskosten 2018, 6
Wikipedia


https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2018_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf
https://de.wikipedia.org/wiki/ENRW_Energieversorgung_Rottweil#/media/Datei:PV_Anlage_auf_der_Rottweiler_Stadthalle.jpg

Investment calculations

An investment calculation quantifies the financial costs and benefits of an investment,
assuming that future income and outgoings can be predicted.

It considers
e Capital costs - Costs for investments and installation
e Consumption costs - Fuel, other materials (e.g. lubricants for wind turbine), etc.
e Operating costs - Maintenance, wages, insurance, management, etc.

e Income - depends on market price, subsidies, and production



Dynamic investment calculation

For a dynamic investment calculation we sum the present values of all income and outgoings

over the T years of operation taking account of the interest rate r to get the Net Present

Value (NPV):
-

—lp — Vi — B + U
NPV:§ EL

where [; is the capital expenditure in year t, V; the consumption costs (e.g. for fuel cost o;
and annual production Q;, Vi = o; - Q;), B: the operating costs und U; the income (e.g.
average market value \; times annual production Q;, U = A; - Q).

Conclusion: If NPV > 0, the investment is worthwhile.
If NPV < 0, better to invest with a rate of return of r elsewhere.

For comparisons between different investments, a higher NPV should be preferred.



Example: Rooftop photovoltaic unit

All cash flows (costs and income) in €:

year t 0 1 2 ... 20
Capital costs /; 80.000 0 0 0
Operating costs B; 0 2.000 2.000 2.000
Income U, 0 10.000 10.000 10.000
Net cash flow U; — I; — By -80.000  8.000  8.000 8.000

1 1 1

. 1 1
Discount factor TnF T e TFn®




NPV simplification

If investments only occur in the first year, and the costs and income for the following years are
constant, we can simplify the NPV formula:

-~

NPV =

t:l
The sum > is called the Present Value Factor PVF(r T).

)

For a geometric series with |g| < 1 we have > /¢" . Forg=(1+r)"! wecan
simplify the formula

PVF(r,T) Z 1+r

{1+r 1+rT+1}§:(1+r - {(141—r)_(1+1)”1] l—(11+r)‘1

t=0

1 I+r 1 1 1
1+r A+ nNTH | 14r—1 1+nT o



Example: Rooftop photovoltaic unit

For our example with r = 0.05

1 1
NPV = —80.000 + (10.000 — 2.000) - {1 - (1+r)T}

= —80.000 + 8.000 * 12.5
= 19698

Conclusion: It's worthwile to invest in the photovoltaic unit!

11



Example: Rooftop photovoltaic unit

For our example with r = 0.05

1 1
NPV = —80.000 + (10.000 — 2.000) - {1 - (1+r)T}

= —80.000 + 8.000 * 12.5
= 19698

Conclusion: It's worthwile to invest in the photovoltaic unit!

NB: The calculation is very sensitive to the interest rate, e.g. with r = 0.08
NPV = —80.000 + 8.000 * 9.8

= —1.454

Conclusion: The investment is not worthwhile.

11



Return On Investment (ROI)

The expected return or Return On Investment (ROI) is the required interest rate to reach
the point NPV = 0.

In our example you can either experiment or use the Newton-Raphson algorithm to determine
the ROI r

.
0=NPV=—lh+(U-V-B)> ——

P 1+r

In our example we find an ROl of r = 7.75%.

12



German example figures for electricity production technologies in 2018

WACC is the Weighted Average Cost of Capital over the bank interest rate for borrowed
capital (Fremdkapital) and the investor's ROl on their own investment (Eigenkapital).

PV Dach PV Dach PV Frei-
Klein-  GroBanlgen flache (ab Wind Wind Braun-
anlagen (100-1000 203; : 8 Onshore Offshore kohle
(5-15 kWp) KWp) Wp)
LSy 25 25 25 25 25 30 40 40 30 30
in Jahren
(] 80% 80% 80% 80% 70% 80% 60% 60% 60% 60%
Fremdkapital
Anteil o o o 9 g 9 9 9 9 o
Eigenkapital 20% 20% 20% 20% 30% 20% 40% 40% 40% 40%
Alnsoats 3,5% 3,5% 3,5% 4,0% 5,5% 4,0% 5,5% 5,5% 5,5% 5,5%
Fremdkapital
RamlE 5,0% 6,5% 6,5% 7,0% 10,0% 80%  11,0% 11,0% 10,0%  10,0%
Eigenkapital ! ! ’ ! ' ! ! ' ! ’
g 3,8% 41% 41% 4,6% 69%  48%  7.7% 7.7% 73%  73%
nominal
HEes 1,8% 2,1% 21% 2,5% 48%  27%  56% 5,6% 52%  52%
OPEX fix 2,5% von 2,5% von 2,5% von 4,0% von
[EURKW] CAPEX CAPEX CAPEX e 100 " Capex e & 2 2
OPEX var
[EURAWH] 0 0 0 0,005 0,005 0 0,005 0,005 0,004 0,003

13

Source: Fraunhofer ISE Stromgestehungskosten 2018


https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2018_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf

Discounting over long time periods

Over long time periods the discounting can have a very large effect....

1.0

0.8 1 1
S
£ (L+n)t r=0%
©
£ 0.6 1 r=>5%
5 r=10%
o
o r=15%
£ 0.4

0.2

0.0 . : : : : . .

0 5 10 15 20 25 30 35
year t

40

Long-term benefits aren't
seen, e.g. long production
life of nuclear power plants
or benefits of long-lived
efficiency measures

Long-term costs are also
suppressed, e.g.
decommissioning, waste
disposal, climate damages

This is a controversial
topic!
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Programming example: photovoltaic plant

" Jupyter NPV_examples Last Checkpoint: an hour ago (unsaved changes) e Logout
File  Edit  View | Cel Kemel Trusted Python 3 C
B+ 3 & B 4+ ¥ HRn B C B coe =)

PV Example

In [37]: MW Llifetime = 20 #years
discount_rate = 0.08 #per unit
size = 100 #Kkh
specific_cost = 80 #EUR/KH

flows = pd.DataFrame(index=range (lifetime+1))
flows["investment"] = [-size*specific_ cost] + [0]*lifetime

flows["FOM"] = [0] + [-size*fom]*lifet:

flows["income"] = [0] + [size‘flh‘fit]'lifetime

Tlows["total flow"] = flows.sum(axis=1)

flows["discount_factor"] +dlsc0unt _rate)**(-t) for t in range(lifetime+1)]
flows["discounted total flow"] = flows["total flow"]*flows["discount factor"]

In [38] M flows.head()

oueLzal: investment FOM income total flow discount factor discounted total flow
o om0 o0 wwoo 1o adoooooono
: o 2 w00 w0 oszsezs 07 40707
2 0 -2000 10000.0 8000.0 0.857339 6858.710562
s o 2 w00 o omsss R
. o 2 w000 o o7sseso —

In [39] M flows.sum

Out[39]: investment -80000.000000
FoM -40000.000000
income 200000.000000
total_flow 80000.000000
discount_factor 10.818147
discounted total flow -1454.820740

dtype: float64

15



Programming example: nuclear plant

C Jupyter NPV_examples Last Checkpoint: an hour ago (unsaved changes) ﬁ Logout

File  Edit  View Insert  Cell  Kemel  Widgets  Help Trusted | Python 3 ¢

+(s<]@a B+ ¢ Mrm B C W coe =

Nuclear Example

In [56]: M lifetime = 40 #years

discount_rate = 0.05 #per unit

size = 3e6 #kH

specific_cost = 5000 #EUR/KW

decommissioning cost = 1000 #EUR/KW

fom = 20 #EUR/KW/a

fuel = 10 #EUR/Mih

market_value = 50 #EUR/Mih

flh = 8000 #h/a

flows = pd.DataFrame(index=range (lifetine+1))

flows["investment"] = [-size*specific cost] + [0]*(lifetime-1) + [-size*decommissioning cost]
"FOM'] = [0] + [-size*fom]*lifetime

[
[
[
[
[
[

flows["income"] = [0] + [size*flh*market value/1080]*lifetime
flows["total flow'] = flows.sum(axis=1)
flows["discount factor"] = [(1+discount rate)**(-t) for t in range(lifetime+1)]

flows["discounted_total_flow'] = flows["total flow"]*flows["discount_factor"]

In [57]: M flows.head()

Out[57]:
investment Fom income total_flow discount factor discounted_total_flow
0 -1500000e+10 0.0 0.0000006+00 -1.500000e+10 1.000000 -1.500000e+10
1 0000000600 -60000000.0 1.200000e+09  1.140000e+09 0952381 1.085714e+09
2 0.000000e+00 -60000000.0 1.200000e+09  1.140000e+09 0.907029 1.034014e+09
3 0.000000e+00 -60000000.0 1.2000006+09  1.140000e+09 0.863838 0.8477492+08
4 0.000000e+00 -60000000.0 1.2000006+09  1.140000e+09 0822702 0.378808¢+08

In [59]: M flows.sum()

0ut[59]: investment -1.800000e+10
FOM -2.400000e+09
income 4.800000e+10
total flow 2.760000e+10
discount_factor 1.815909e+01
discounted total flow  4.135221e+09 16
dtype: float6d



e Future income or costs are worth less from today's point of view

e To calculate the present value, multiply the cash flow in year t by the discount factor
1

("

e To calculate the net present value (NPV) for an investment, sum the present values of
all income and costs

e If NPV > 0, the investment is worthwhile compared to investing with interest rate r
e For two different investments, a higher NPV should be preferred

e Long-term costs or benefits are suppressed by discounting

17



Levelised Cost Of Electricity
(LCOE)




Levelised Cost Of Energy (LCOE)

You can also solve for the market value or feed-in tariff that's necessary to cover all the costs of
the investment, i.e. the point where the present value of all income balances the present value
of all costs. You solve for the price A such that

0= NPV = —lp + (AQ — 0Q — B)PVF(r, T)
(using V = 0Q). We find:

1 I 1 I
A= o (PVF(r, 7 + B+oQ) e (PVI__(r, D) + B) +o

In our example we find a price of A = 89 €/MWh for / = 0.05.

This value corresponds to the average long-term costs of the unit, since we've divided the total
yearly costs by the total production Q. It is called the the Levelised Cost Of Energy (LCOE).

It is also called the Long-Run Marginal Cost (LMRC), since we've added to the short-run
marginal cost o an annualised contribution to the capital cost and the operating costs.

Check: The higher Iy or B are, the higher the LCOE. The higher Q is, the lower the LCOE. 18



The annuity is the annualised investment cost a = W and a(r, T) = W is the
annuity factor, which spreads the capital costs ly evenly over the operational years of the

investment (like a mortgage for a house).

For a loan Iy from the bank, the bank is compensated for the opportunity cost of investing
elsewhere at a rate of r by an annual fixed sum a so that the NPV for the bank is zero

i
a /0

0= NPV = —| =+ PVF(r, T)—————

°+§)(1+r)f 0+ PV D v T

The formula for the annuity factor is derived from that for the PVF:

1 r
D =Ty e R e

19



Examples of annuity factor

AF = Annuity Factor, a(r, T) Things to notice:

e AF reduce to 1/T in limit r — 0
Lifetime T  Discount Rate r AF a(r, T)

years A per unit e AF climbs steeply with r
20 0 0.05 e For long lifetimes, AF is similar to short
20 5 0.08 lifetimes for high r - in reality investors try to
20 10 0.12 pay off investments faster than lifetime
20 20 0.21 | ! . y "
e In reality, an investor woula provide some
40 0 0.025
40 5 0.06 capital themselves, e.g. 10-20% of the capital
40 10 0'10 cost, and borrow the rest from the bank. The
40 20 0'20 weighted average of the investor's desired

internal rate of return and that of the bank

loan is the weighted average cost of capital

(WACCQ).
20



Parameters for different generation technologies

Here are some typical investment and operational parameters projected for 2020:

Source Lifetime Capital Cost Fix O&M  Var O&M 7 Fuel Cost Marg. Cost

years €kw~t  €kw1a7! €MWh;1 [%] €/MWhy,  €/MWhg
Hard Coal 40 1200 30 6 39 10 32
Gas OCGT 30 400 15 3 39 20 54
Gas CCGT 30 800 20 4 60 20 37
Nuclear 40-60 6000 0 6 33 33 16
Wind Onshore 25 1240 35 0 0 0
Solar PV 25 750 25 0 0 0

O&M = Operation and Maintenance, Var. = Variable, Fix. = Fixed, n = efficiency

For a plant with capacity Gs in MW and yearly production @ in MWh), we have
lp = 1000 - G, - (Capital Cost), B = 1000 - G; - (Fix O&M), V = Q - 0 where o is the marginal
cost o = (Marg. Cost) = (Var O&M) + (Fuel Cost)/n. 21

Source: DIW Data Documentation, 2013


https://www.diw.de/documents/publikationen/73/diw_01.c.424566.de/diw_datadoc_2013-068.pdf

LCOE for dispatchable generators depends on capacity factor

The LCOE had the form (Marg. Cost) + (Yearly Fixed Costs)/(Yearly Production). Therefore
it decreases with increasing capacity factor:

e LCOE > marginal cost

coal .
gas OCGT e L COE starts high then reduces as fixed
gas CCGT
nuclear

costs are spread over more hours

e There are crossing points where some
types of generators become cheaper for

LCOE [EUR/MWh]

a given capacity factor

e NB: All generators need downtime for
regular maintenance, so cf < 0.9

02 0.4 06 08 1.0 . .
capacity factor [per unit] e NB: Carbon pricing would alter this

graphic by adding to the marginal cost22



LCOE for wind and solar depends on location: worldwide auction results 2017

A selection of recent global auction results #% Baringa

Renewable auction prices are reducing globally, and these inform our cost input assumptions

O reed in Tariffs/premiums only

Both FiTs and Auctions
B suctions ony annual

o -

Offshore wind

Germany
o

Solar pv.
re, onshore

{ Auction frequency - Unce tain

Turkey

Auction frequency
Ji Biomass, Hydro, Wind, Solar,

Uncertain
Geothermal
Auction frequency — Scheduled

[ sormawn |

France

UAE
Solar PV
auction frequency-

Solar, onshore, off

scheduled

Mexico Moracco

All rene Hydro, Wind , Solar

wction frequency \uction frequency - Scheduled

China
s, Hydro, Wind

lar, Geothermal
Central America (Guatemala, :

on fre quency

At IR

Wind, solar auct
held in

Honduras, Panama) hoe
Solar, Biomass, Small Hydro,
al
Auction frequency - Ad hoc

d , Geother

Wind, Solar

. number of
Auction frequency

Peru
s \ Scheduled, first
mall Hydro, o, Wind, [\

- auction in 2015
Wind , Geothermal

Auction frequency —Ad hoc

Argentina I
Hyd g

Auction frequency - scheduled

All technologies Solar,
Auction frequency

\nnual (first in Oct 2016)

Source: Baringa analysis; IRENA (htinsi/ /v ENA Renewsb

1 _auction: countri

); all prices are stated in USD

Copyright © Barings Pariners LP 2017. A Thisdocument and proprietary information Source: Baringa Partners LLP 2017


https://www.baringa.com/getmedia/99d7aa0f-5333-47ef-b7a8-1ca3b3c10644/Baringa_Scottish-Renewables_UK-Pot-1-CfD-scenario_April-2017_Report_FINA/

Levelised Cost of Electricity Since 2009 in US

NB: Treat with care since LCOE doesn’t take account of time or place of generation!

Selected Historical Mean LCOE Values®

Mean LCOE
SMwh

$360 , $359
330 4
300 4
270
240
Nuclear
210 4 20%
180 4 Coal
(8%)
i (27%)
120 | $123
am §102 Utility Scale Solar
ap | _ $102 (86%)
583 =7 p™ $65 $63
60 $60 Wind
§59 255 $50 (67%)
30 + r . ; ; - " : $47 $45
Year 2009 2010 2011 2012 2013 2014 2015 2016 2017

24
Source: Lazard’s LCOE Analysis V11


https://www.lazard.com/perspective/levelized-cost-of-energy-2017/

Duration Curves and Capacity

Factors: Examples from Germany
in 2015




Load curve

Here's the electrical demand (load) in Germany in 2015:
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2015

To understand this curve better and its implications for the market, it's useful to stack the

hours of the year from left to right in order of the amount of load. -



Load duration curve

This re-ordering is called a duration curve.
For the load it's the load duration curve.

80

70

60

w
o

Load [GW]
w B
o o

N
o

10

0.0 0.2 0.4 0.6 0.8 1.0

Percentage of time [per unit] 2%



Nuclear curve

Can do the same for nuclear output:

14

12

10

Nuclear [GW]
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Nuclear duration curve

Duration curve is pretty flat, because it is economic to run nuclear almost all the time as
baseload plant:

14

12

10

Nuclear [GW]

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of time [per unit] 28



Gas curve

Can do the same for gas output:

16 T T T T

14

12

10

Gas [GW]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2015
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Gas duration curve

Duration curve is partially flat (for heat-driven CHP) and partially peaked (for peaking plant):

16

14}

12

10 |-

Gas [GW]

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of time [per unit]

The capacity factor for gas is much lower - more like 20%. 30



Price curve

Can do the same for price during the year:

100
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20

Day ahead market clearing price [EUR/MWh]
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Price duration curve

By ordering we get the price duration curve:
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20
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0.0 0.2 0.4 0.6 0.8 1.0
Percentage of time [per unit]
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Now we are in a position to consider the questions:

e What determines the distribution of investment in different generation technologies?

e How is it connected to variable costs, capital costs and capacity factors?

We will find the price and load duration curves very useful.

33



Investment Optimisation:
Generation




Investment optimisation

Now we also optimise investment in the capacities of generators, storage and network lines
for the whole system not just a single plant operator, to maximise long-run efficiency.

We will promote the capacities Gj s, Gj ., E;i, and F; to optimisation variables.

For generation investment, we want to answer the following questions:
e What determines the distribution of investment in different generation technologies?
e How is it connected to variable costs, capital costs and capacity factors?

We will find price and load duration curves very useful.

34



Definition of long-run effi

Up until now we have considered short-run equilibria that ensure short-run efficiency (static),
i.e. they make the best use of presently available productive resources.

Long-run efficiency (dynamic) requires in addition the optimal investment in productive
capacity.

Concretely: given a set of options, costs and constraints for different generators
(nuclear/gas/wind/solar) what is the optimal generation portfolio for maximising long-run

welfare?
From an indivdual generators’ perspective: how best should | invest in extra capacity?

We will show again that with perfect competition and no barriers to entry, the system-optimal
situation can be reached by individuals following their own profit.

35



Baseload versus Peaking Plant

Load (= Electrical Demand) is low during night; in Northern Europe in the winter, the peak is
in the evening.

To meet this load profile, cheap baseload generation runs the whole time; more expensive
peaking plant covers the difference.

80 . -
Peaking I Baseload
Il Intermediate = Load

70

60

50

40

30

Electrical demand [GW]

20

10

36

Source: Tom Brown




Different types of generators

Fuel/Prime  Marginal Capital  Controllable Predictable CO2

mover cost cost days ahead

Oil V. High  Low Yes Yes Medium
Gas OCGT  High Low Yes Yes Medium
Gas CCGT  Medium  Medium  Yes Yes Medium
Hard Coal Medium  Lowish  Yes Yes High
Brown Coal Low Medium  Yes Yes High
Nuclear V. Low High Partly Yes Zero
Hydro dam  Zero High Yes Yes Zero

Wind/Solar ~ Zero High Down No Zero

37



System-optimal generator capacities and dispatch

Suppose we have generators labelled by s at a single node with marginal costs os from each
unit of production g and specific capital costs ¢, from fixed costs regardless of the rate of
production (e.g. investment in building capacity Gs). For a variety of demand values d; that
occur with probability p; (>, pr = 1) we optimise the total average hourly system costs

i G,
o min_ [XS: csGs + szt: ptosgs,t]

such that (rescaling the KKT multipliers by p; to simplify later formulae)

ng,t = d; A4 Pt

s
—8&,<0 < [T
st — Gs <0 < Ptits,t

We will also allow load-shedding with a ‘dummy’ generator s = S, os = V (Value of Lost

Load), c¢s = 0 (the capacity to shed load is assumed not to cost anything). 2



Beware units and scaling

We've chosen the units here so that the total objective function has units €h~1, the average
hourly system costs.

D <t Pt0sgs.+ is the expectation value of the hourly production costs. g has units MW, o, has
units €(MWh)~1.

¢s Gs is the investment cost averaged over each hour, i.e. the annuity divided by 8760, a(é;gg"’

(we can also add the fixed O&M costs B to it). Gs has units MW, ¢ has units €EMW~th~1.

We could have instead optimised average yearly system costs, then ¢; G5 would simply be the
annuity, and instead of weighting with p; such that >, p; = 1, we replace it with a weighting
we such that >, w, = 8760. In this case, the total objective would have units €a~ L

39



System-optimal generator capacities and dispatch

Stationarity gives us for each s and t:

oL * — % *
0= 8gs,t — P (Os B )\t T Hs + Hs,t)

and for each s:
oL .
0= 07(55 = cs—i-;ptus’t
and from complementarity we get

ﬁ:,t(gs*,t - Gs*) =0
H:,tgs*vf =0

and dual feasibility (for minimisation) fi ,, > < 0.

40



System-optimal generator capacities and dispatch

The solution for the dispatch g, is exactly the same as without capacity optimisation. For

each t, find the generator m where the supply curve intersects with the demand d;, i.e. the m
where Y"1 G < dp < 37 G

For s < m we have g, = G/, /_L;t =0, fig, =o0s — Af <0.

For s = m we have g, , = di — Z;":_ll GJ to cover what's left of the demand. Since
0 < gnm: < Gm we have ;_L:‘n’t = [ip, = 0 and therefore A} = op,.

For s > m we have g7, =0, > = A; —o0s <0, fig, = 0.

What about the G}7?

41



System-optimal generator capacities and dispatch

The G} are determined implicitly based on the interactions between costs and prices.

From stationarity we had the relation
== Pl
t
The fig . were only non-zero with Af > o5 so we can re-write this as

= Y, p(Af— o)

t|A; >o0s

‘Increase capacity until marginal increase in profit equals the cost of extra capacity.’

42



Multiple price duration

The optimal mix of generation is where, for each generation type, the area under the
price—duration curve and above the variable cost of that generation type is equal to the fixed
cost of adding capacity of that generation type.

Price 4
Price—duration curve

At the optimal level of capacity
the area under the price—

03 |------ duration curve and above the
variable cost is equal to the per
unit cost of capacity

0p f----=--=--=------%

[ T et

»

1 Durati'on

43

Source: Biggar and Hesamzadeh, 2014



Multiple generators with inelastic demand

Assume again we have 0 < 0y <--- < os =V and K, = Zgzl G, then:

LoV fordi>Kso
"7 os if Keoq < di < K, fors=1,...5-1

Looking at the area under the price duration curve but above the variable cost, we then find:

S—1
G =(V—0))P(d>Ks_1)+ Y (0j—05)P(Kj—1 < d < K))
j=s+1
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Screening curve

These equations can be rewritten recursively using the substitution 0, = P(d > Kj):

Cs—1+0s_105_1 = VOs_;
Cs + 0505 = cs11 + 050511 Vs=1,...5-2

The first equation can be solved to find fs_1, then the other equations can be solved
recursively to find the remaining 6s. The 05 correspond to the optimal capacity factors of each
type of generator, which correspond to the fraction of time the generator runs at full power.
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Screening curve

The costs as a function of the capacity factors can be drawn together as a screening curve
(more expensive options are screened from the optimal inner polygon).

The intersection points determine the optimal capacity factors and hence, using the load
duration curve, the optimal capacities of each generator type.

A Baseload generator has a higher
fixed cost and a lower variable cost Peaki
eaking generator has a lower
\ fixed cost and a
higher variable cost
&]
Optimal capacity factor is where
— the screening curves for the two
// generators intersect
(&) :
0 1
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Screening curve versus Load duration

Screening curves
4 -

1
2
4] 1
4
Optimal level of )
load shedding Load~-duration
curve

Optimal level of i
peaking capacity

Optimal level of
baseload capacity
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Example: 2 generation technologies and load shedding

Suppose that electrical demand is inelastic with a demand-duration curve given by

d(x) = 1000 — 1000x for 0 < x < 1. Suppose that there are two different types of generation
with variable costs of 2 and 12 €/MWh respectively, together with load-shedding at a cost of
1012 €/MWh. The fixed costs of the two generation types are 15 and 10 €/MWh respectively.
See the below table for a summary of the costs.

Generator o5 [E/MWh] ¢, [€/MW/h]

A 2 15
B 12 10
LS 1012 0
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Example: 2 generation technologies and load shedding

1. What is the interpretation of the demand-duration curve?

2. Below which capacity factor xj is it cheaper to run Generator B rather than to run
Generator A?

3. Below which capacity factor x is it cheaper to shed load than to run Generator B?
4. Plot the costs as a function of x and mark these intersection points on a screening curve.

5. Find the optimal capacities of Generators A and B in this market.
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Example: 2 generation technologies and load shedding

For the solution see the flipchart photos at
https://nworbmot.org/courses/esm-2018/board/.

To find xq, solve for the intersection of Generator A's cost curve with Generator B's cost curve
as a function of capacity factor:

ca+x10a = cg + X108
This gives x; = 0.5. At this point the demand is d(0.5) = 500 MW therefore
Ga = 500 MW

To find xg, solver for where Generator B crosses the load-shedding line:
CB + X00B = CLs + X0OLS
This gives xo = 0.01. At this point the demand is d(0.5) = 990 MW so:
Ga + Gg =990 MW
i.,e. Gg =490 MW and G;s =10 MW. 50
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Investment Optimisation:
Transmission




As before, our approach to the question of “What is the optimal amount of transmission”

is determined by the most efficient long-term solution, i.e. the infrastructure investement that
maximising social welfare over the long-run.

Promote F; to an optimisation variable with capital cost c,.

In brief: Exactly as with generation dispatch and investment, we continue to invest in
transmission until the marginal benefit of extra transmission (i.e. extra congestion rent for
extra capacity) is equal to the marginal cost of extra transmission. This determines the optimal
investment level.

For the generator case we had ¢, = — ), pji; , where jif , were the shadow prices of the
constraints gs ; < Gs.

For the transmission line we have f, < Fy (fi; ) and —f, < Fy () so we get

==Y p (ﬂ}it + /_lfzt)
t
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