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Idea of Principal Component

Analysis (PCA)



The idea of Principal Component Analysis (PCA)

Suppose we have a set of time series xi (t) for

i = 1, . . .N whose means 〈·〉 are centred at the

origin 〈xi (t)〉 = 0 for all i .

Principal Component Analysis (PCA) is a tool

to find the directions in the N-dimensional xi
space which cause the biggest variance.

We change to a new (orthonormal) basis ρki
(k = 1, . . .N) in N-dimensional xi space where the

first basis vector ρ1 is in the direction of highest

variance, the second ρ2 in the next highest, etc.

We can then use this for dimensional reduction

and ignore directions with low variance.
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Procedure 1/2

• Calculate the covariance matrix:

Σij = 〈xi (t)xj(t)〉 − 〈xi (t)〉〈xj(t)〉 = 〈xi (t)xj(t)〉

remembering that we’ve arranged 〈xi (t)〉 = 0. NB: The covariance matrix is symmetric

(⇒ N orthogonal eigenvectors) and positive semi-definite (⇒ eigenvalues λk ≥ 0).

The diagonal entries Σii give the variance of each xi (t).

• Find the eigenvectors ρki and eigenvalues λk for k = 1, . . .N of the normalised

covariance matrix Σ
tr(Σ)

1

tr(Σ)

∑
j

Σijρ
k
j = λkρ

k
i

The normalization is chosen such that
∑N

k=1 λk = tr
(

Σ
tr(Σ)

)
= 1.
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Procedure 2/2

• Order the eigenvectors ρki and eigenvalues λk from highest λk to lowest. The value λk
represents the share of the variance of xi (t) associated with the kth component ρki .

• We can discard components with low variance, e.g. only keep the first K principal

components such that
∑K

k=1 λk ≥ 0.95, i.e. that represent 95% of the variance.

Note that the ρki is an orthogonal matrix that defines a new basis for the N-dimensional space

such that the projections of xi (t) onto this new basis are uncorrelated with variance ∝ λk .

Orthogonal means the matrix multiplied by its transpose gives the identity matrix I:∑
i

ρki ρ
l
i = Ikl =

{
0 if k 6= l

1 if k = l

If we now project xi (t) onto the ρki , xi (t) =
∑

k ak(t)ρki , show that ak(t) =
∑

i ρ
k
i xi (t) and now

〈ak(t)al(t)〉 =
∑
i,j

ρki ρ
l
j〈xi (t)xj(t)〉 =

∑
i,j

ρki Σijρ
l
j =

∑
i

ρki tr(Σ)λlρ
l
i = tr(Σ)λkIkl
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PCA as optimisation problem

We can also represent this procedure as an optimisation problem.

We define the projection of xi (t) onto some unit vector ρ1
i (ρ1 · ρ1 = 1):

a1(t) = x(t) · ρ1

We choose the ρ1 such that the variance of a1(t):

〈a1(t)2〉 = 〈(x(t) · ρ1)2〉

is maximised. This is an optimisation problem!

max
{ρ1

i }

∑
i,j

〈
xi (t)xj(t)ρ1

i ρ
1
j

〉
such that ∑

i

ρ1
i ρ

1
i = 1 ↔ λ1
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PCA as optimisation problem

KKT gives us from stationarity

0 =
∂L
∂ρ1

i

=
∂f

∂ρ1
i

− λ1
∂g1

∂ρ1
i

= 2
∑
j

ρ1
j 〈xi (t)xj(t)〉 − 2λ1ρ

1
i

This is nothing other than the eigenvalue equation for the covariance matrix Σij = 〈xi (t)xj(t)〉!

Now consider the remainder defined by

δi (t) = xi (t)− a1(t)ρ1
i

Now let’s find a second unit vector ρ2
i which is orthogonal to ρ1

i and points in the direction of

greatest variance of the remainder δi (t)

max
{ρ2

i }

∑
i,j

〈
(δi (t) · ρ2)2

〉
= max
{ρ2

i }

∑
i,j

〈
(xi (t) · ρ2)2

〉
where we’ve used the fact that ρ1 · ρ2 = 0. Repeating optimisation, we get another

eigenvalue-eigenvector pair. Repeat until we have all eigenvalues and eigenvectors.
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Application to Power System



Application to power injections for highly renewable European system

We’re now going to apply PCA to the solved

dispatch and network flows for a highly renewable

European power system.

First we apply PCA to the power injections

pi (t) =
∑

s gi,s(t)− di (t) (generation minus

demand). We compute the power injection

covariance matrix:

Σp
ij = 〈pi (t)pj(t)〉 − 〈pi (t)〉〈pj(t)〉

NB: i , j run over the N different network nodes.

Next we find the eigenvectors and eigenvalues λpk
that represent the principal components.

Average power injection 〈pi (t)〉 at each node:
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https://arxiv.org/abs/1807.07771


Power injection components

The first 3 principal components represent the major axes of weather variations (1st is coastal

wind production, 2nd is North-South seasonal pattern, 3rd is East-West load and solar daily

pattern - check by Fourier transforming projection onto components):
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https://arxiv.org/abs/1807.07771


Application to resulting power flows

Next we apply PCA to the resulting power flows f`,

related via the Power Transfer Distribution Factors

f` =
∑
i

H`ipi

(we use the notation H = K tL−1 for the PTDF to

make things easier later).

We compute the power flow covariance matrix:

Σf
`m = 〈f`(t)fm(t)〉 − 〈f`(t)〉〈fm(t)〉

NB: `,m run over the L different network lines.

Next we find the eigenvectors and eigenvalues λfn
that represent the principal components.

Average power flow 〈f`(t)〉 at each line:
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Source: Hofmann et al, 2018

https://arxiv.org/abs/1807.07771


Power flow components

The first 3 principal components represent the major flow (1st is flow to North-West, 2nd to

North-East and 3rd shows multiple directions). Note that the first three make up a much

larger share of the variance than for the power injection case.
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https://arxiv.org/abs/1807.07771


Number of relevant components

• How many principal components K do we need to represent 95% of the total variance?

K∑
k=1

λk ≥ 0.95

• How does this number depend on the spatial resolution, i.e. the number of network nodes

N used to represent the European grid?
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https://arxiv.org/abs/1807.07771


Number of relevant components

This graph is odd for (at least) 3 reasons:

• Why does the number of components required for the power injection rise then saturate at

several hundred nodes? (Answer: correlation length)

• Why are so few components required to represent the power flow?

• Why doesn’t the number of components change for the power flow?
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https://arxiv.org/abs/1807.07771


Relation of injection to flow covariance matrix

We have the following equations:

f` =
∑
i

H`ipi

Σp
ij = 〈pi (t)pj(t)〉 − 〈pi (t)〉〈pj(t)〉

Σf
`m = 〈f`(t)fm(t)〉 − 〈f`(t)〉〈fm(t)〉

So how are the flow covariance Σf
`m and injection covariance Σp

ij matrices related?

Σf = HΣpH t
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Relation of injection to flow covariance matrix

Now consider another N × N matrix M defined by

M = ΣpH tH

Note that the first term Σp comes from the injection pattern, whereas the second part H tH is

entirely determined by the topology of the network (built from K and L).

If νk is an eigenvector of M with eigenvalue ηk , Mνk = ηkν
k , show that Hνk is an eigenvector

of Σf with eigenvalue ηk .

ΣfHνk = HΣpH tHνk = HMνk = ηkHν
k

So to analyse the principal components of the flow, it suffices to study the eigenvectors of

matrix M.

It turns out that if the first few eigenvectors of H tH and Σp with the strongest eigenvalues

strongly overlap, then they magnify each other to the exclusion of other eigenvectors.

This is what happens for M (and by extension Σp): the eigenvectors of H tH magnify only the

first few principal components of Σp, which then dominate Σf .
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Network topology reinforces power injection pattern to magnify flow pattern

15



Network Topology reinforces flow pattern

To find out more, see our paper:

Fabian Hofmann, Mirko Schäfer, Tom Brown, Jonas Hörsch, Stefan Schramm, Martin Greiner,

“Principal Flow Patterns across renewable electricity networks,” EPL, 2018, link
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