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Modelling questions

In collaboration with Google we model 24/7 procurement in 4 EU countries up to 2030.

We want to find out:

� How can we achieve hourly clean energy matching?

� What is the cost premium versus annual matching?

� Can long-duration storage or new dispatchable clean technologies help?

� If many companies take a 24/7 approach, how does this effect the rest of the system?

Today: Some preliminary results.
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100% RES annual matching does not match hourly demand
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� 100% RES PPAs result in

periods of oversupply

and deficit

� Hours of deficit must be

met by rest of system

� These hours may have

high emissions and

high prices

� 24/7 carbon-free energy

(CFE) matches demand

on hourly basis
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Results: fraction of demand met with carbon-free energy (CFE)
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Results: fraction of demand met with carbon-free energy (CFE)
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� 100% RES has only

annual matching

� 100% RES PPA

covers only 71%

of hourly demand

with carbon-free

energy (CFE)

� CFE target requires

hourly CFE
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Average emissions of procured electricity
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� Graphic shows

average

emissions rate of

used electricity

� As CFE target is

tightened, average

emissions

drop to zero
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Cost breakdown with existing technologies (wind, solar, battery)
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Cost breakdown with existing technologies (wind, solar, battery)
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Cost breakdown with existing technologies (wind, solar, battery)
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targets include

battery storage

� 98% CFE has cost

premium of 59%

over 100% RES

� Last 2% more

than doubles cost
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Cost breakdown with long duration energy storage (LDES)
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Cost breakdown with advanced dispatchable generators
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� Advanced
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nuclear could

further limit cost

� Firm generation

could remove

CFE cost

premium

� Results very

sensitive to cost

assumptions (here

nuclear LCOE is

88 ¿/MWh)
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Results: System emissions in Ireland
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Results: other countries show similar effects (e.g. Denmark)
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depending on
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2030 grid is

cleaner, so CFE

uses grid more

� With LDES cost

premium is

just 34%
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Conclusions

� 24/7 CFE procurement reduces emissions both for buyer and for rest of system

� 80-90% hourly CFE target has only small cost premium over annual RES matching

� 100% hourly CFE target increases costs by 0-60%, depending on technologies available

� 24/7 approach triggers investment in new technologies the system will need later:

long-duration storage and dispatchable clean generation

� 24/7 approach benefits the rest of the system, reducing emissions and flexibility needs
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Code availability

The code is already available online with an MIT licence:

https://github.com/PyPSA/247-cfe
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Yearly versus hourly matching

Companies often match their demand on a yearly basis with renewable energy, but on an

hourly basis they still have hours when they rely on the fossil-dominated grid.
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https://www.gstatic.com/gumdrop/sustainability/247-carbon-free-energy.pdf


Yearly versus hourly matching

� By combining wind and

solar, or using storage or

dispatchable low-carbon

resources, they can

improve the hourly

matching.

� These examples compare

grid energy, versus yearly

renewable PPAs, versus a

90% carbon-free energy

(CFE) PPA.
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Implementation of C&I demand and supply

The hourly C&I demand dt for hour t can be met by procured CFE generators s ∈ CFE

dispatching gs,t MW but also storage discharging ḡs,t and charging g
¯s,t

for storage

technologies s ∈ STO as well as from imports from the grid imt . The excess from the local

supply ext can either be sold to the grid or curtailed∑
s∈CFE

gs,t +
∑

s∈STO

(
ḡs,t − g

¯s,t

)
− ext + imt = dt ∀t

imt ext

dt gCFE ,t gSTO,t
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Methodology for RES and CFE constraints

The 100% RES constraint ensures that the sum of all dispatch gs,t for RES generators

s ∈ RES over the year t ∈ T is greater than the sum of demand dt at the data center∑
s∈RES,t∈T

gs,t ≥
∑
t∈T

dt

The x · 100% carbon-free energy (CFE) constraint sums over CFE generators s ∈ CFE but also

storage discharging ḡs,t and charging g
¯s,t

for storage technologies s ∈ STO as well as the

excess from the data center ext (could be sold to grid or curtailed) and import from the grid

imt multiplied by the grid’s CFE factor CFEt (the fraction of CFE technology running at time t)∑
s∈CFE ,t∈T

gs,t +
∑

s∈STO,t∈T

(
ḡs,t − g

¯s,t

)
−

∑
t∈T

ext +
∑
t∈T

CFEt · imt ≥ x ·
∑
t∈T

dt

The grid CFE factor CFEt is affected by capacity built at data center, so has to be updated

iteratively (starting with CFEt = 0∀t, convergence is very good after 1 iteration).
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Test case: Ireland

� Test case with island of Ireland as isolated system

� Data center attached to country of Ireland node with

1 GW baseload profile (25% of country’s average load,

∼ 40% of C&I in country Ireland)

� CO2 certificate price exogenous of 130 e/tCO2

� Rest of system is brownfield (i.e. today’s fleet with

lifetime to 2030 is included)
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Python for Power System Analysis (PyPSA)

� Open source tool for modelling energy

systems at high resolution developed

at TU Berlin.

� Fills missing gap between power flow

software (e.g. PowerFactory,

MATPOWER) and energy system

simulation software (e.g. PLEXOS,

TIMES, OSeMOSYS).

� Good grid modelling is increasingly

important, for integration of

renewables and electrification of

transport, heating and industry.

PyPSA is available on GitHub.

20

https://github.com/PyPSA/PyPSA


Python for Power System Analysis: Worldwide Usage

PyPSA is used worldwide by dozens of research institutes and companies (TU Delft, KIT,

Shell, TSO TransnetBW, TERI, Agora Energiewende, RMI, Fraunhofer ISE, Climate Analytics,

DLR, FZJ, RLI, Saudi Aramco, Edison Energy, spire and many others). See list of users.
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PyPSA-Eur: Open Model of European Energy System

220 kV
300 kV
380 kV

Basic validation of grid model in

Hörsch et al, 2018),

github.com/PyPSA/pypsa-eur

� Grid data based on GridKit extraction of

ENTSO-E interactive map

� powerplantmatching tool combines open

databases using matching algorithm DUKE

� Renewable energy time series from open

atlite, which processes terabytes of weather

data from e.g. new ERA5 global reanalysis

� Geographic potentials for RE from land use

GIS availability

� All energy demand and supply options (power,

transport, heating and industry)

� See other slidedeck for full details
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Data-driven energy modelling

Lots of different types of data and process knowledge come together for the modelling.

clustered network model power plants and renewable potentials and hourly demand projections

technology assumptions time series for each region time series
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What is PyPSA-Eur-Sec?

Model for Europe with all energy flows...
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and bottlenecks in energy networks.

HVAC 220 kV
HVAC 300 kV
HVAC 380 kV
HVDC
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More information

All input data and code for PyPSA-Eur-Sec is open and free to download:

1. https://github.com/pypsa/pypsa: The modelling framework

2. https://github.com/pypsa/pypsa-eur: The power system model for Europe

3. https://github.com/pypsa/pypsa-eur-sec: The full energy system model for Europe
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