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3 Thoughts on Managing Uncertainty in a Fragmenting World ““'lﬁ
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e Global restructuring is a source of uncertainty in system planning (examples of
energy-intensive value chains, supply-chain bottlenecks for grid and gas turbines)

e Need agile solutions to manage infrastructure uncertainty (example of near-optimal
use of methanol for backup)

e VRE and electrification magnify need for resilience and risk-averse planning
(example of black-start capable regions)



Major uncertainties for supply
chains affect planning



Supply chain bottlenecks causing a reassessment of planning l'E
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Demand for transmission lines and transformers (due to VRE, electrification) and gas turbines
(due to data centres) has led to supply bottlenecks, costs growing 3-5x. German transmission
expansion costs escalated from 2023 to 2025 from 320 bn€ to 440 bn€. Need to reassess!

Spezifische Kosten fur 380kV Trasse [€nominal/MVA/KM]
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Electricity transmission savings from Ariadne Scenario Report I'E

Investments in electricity transmission [billion EUR2020]
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https://ariadneprojekt.de/pressemitteilung/ariadne-report-zeigt-kosteneffiziente-pfade-zur-klimaneutralitaet-2045-in-deutschland/

Scenarios show increase in electrification, hydrogen for some of rest llﬁ
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Transport derivates, not hydrogen "ﬁ
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Most of hydrogen is used to produce derivatives like ammonia, direct-reduced iron (DRI) and
methanol, precursors for energy-intensive industry and fuels for transport.
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http://arxiv.org/abs/2510.00918

Germany could import hydrogen or precursors from Europe, World I'E
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Importing from World saves most costs, from Europe 48% of that l'ﬁ
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Precursor import reduces prices & infrastructure for hydrogen ..E
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Near-optimal solutions for agility:
methanol




But which hydrogen demand sectors really need actual hydrogen? l'ﬁ
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All potential hydrogen demand sectors can be served by electrification or by hydrogen
derivatives (e-fuels like ammonia, methanol, etc.) that are easier to transport and store.

sector alternatives if hydrogen not available
heavy duty trucks electrify

iron direct reduction do reduction close to ore / in cluster
ammonia synthesise close to hydrogen source

high value chemicals methanol or naphtha

process heat electrify/use e-fuels

shipping methanol or ammonia

aviation kerosene from methanol or Fischer-Tropsch

backup power & district heat use derivative fuels (methane, methanol)

= There is no strict need for hydrogen outside of industry clusters.



Challenges with hydrogen economy '.E
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A hydrogen economy comes with several challenges:

The molecule size is small, making it easy to leak and e.g. embrittle steel

The volumetric density is low, making storage and transport difficult

Salt deposits necessary easy underground storage in caverns are not widely available
Vehicular transport is costly, pipeline network is necessary

Hydrogen is an indirect greenhouse gas with GWP100 of 11.6 +2.8

The widespread usage of a new gas requires a coordinated scale-up of lumpy GW-scale
pipelines, storage, supply and demand
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Introducing methanol J::c:;;;:l'ﬁ
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Methanol, the simplest alcohol CH30H can fit the bill for many non-electric sectors.

Advantages: liquid, easy to store/transport, widely traded, burns cleanly. Don't drink it!
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Source: Wikipedia; Yves Meur



Idea: ‘Electrification plus minimal methanol economy’ H"E
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e Electrify as much as possible
e Use hydrogen in clusters for sectors where really needed (ammonia, iron ore reduction)

e Use methanol as a gap-filler for the rest (backup power & heat, shipping, aviation,
chemical industry)

e Methanol is more easily storeable and transportable than hydrogen (liquid at RTP)

e Methanol scales down to MW-scale use cases without lumpiness of big infrastructure
(frictions and non-linearities not seen by models)

e (E-)biomethanol can absorb sustainable carbon from decentral biomass and wastes,
then be used directly in industry or dense fuels (carbon management)
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Methanol as platform for hard-to-electrify
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https://arxiv.org/abs/2505.09277

Methanol instead of gas/hydrogen grid only 3% more expensive
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https://arxiv.org/abs/2505.09277

Resilience: Network Restoration
After a Blackout




Designing a resilient system s I'E

e Electrified building heating and transport
make resilient system design paramount

e Can each region black-start and run for two
weeks during system restoration after a full
blackout? During a cold wind lull?

e Are we sure gas or hydrogen networks would
function during a blackout? Electronics in
compressor stations are vulnerable, cf. Texas
in Feb 2021 for unexpected issues.

Source: netztransparenz.de,2024


https://www.netztransparenz.de/de-de/Systemdienstleistungen/Versorgungswiederaufbau

Simple, robust solution: peaker capacity with methanol tanks l'ﬁ
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e Put turbines or motors to cover winter peak in
each region, next to a giant methanol tank

e Can also run as synchronous condenser to
provide reactive power, fault current, inertia

e Methanol tanks cost just 0.01-0.05 €/kWh

e Single 200,000 m3 tank can store 880 GWh

e Can be built anywhere, take up little space

e Can be dimensioned to provide resilience against
low wind years, volcanos, infrastructure outages,
sabotage, blackouts
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Source: Wikipedia


https://en.wikipedia.org/wiki/Storage_tank

PyPSA v1.0: stochastic and risk-averse optimisation '.E
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Two-stage stochastic optimisation (first investments, then uncertainty on e.g. gas price or
hydrogen volume) allows for Conditional Value-at-Risk (CVaR) formulation of risk-aversion.
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Source: PyPSA Pull Request, 2025


https://github.com/PyPSA/PyPSA/pull/1345

Conclusions




Conclusions e | 'E
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e Global restructuring of energy-intensive value chains as well as supply bottlenecks are
examples of uncertainty strongly affecting infrastructure planning

e Need for agile, near-optimal solutions that avoid infrastructure lock-ins

e A minimal methanol economy avoids long-distance transport of methane or hydrogen,
de-links the scale-up of infrastructures (storage, pipelines), avoids frictions of hydrogen

e Using methanol in this way as a gap filler for backup power and heat is only 24 billion
euros per year (3% of system cost) more expensive than a methane/hydrogen system

e Increasing reliance on the power system means we need to focus on resilience

e System restoration needs could alter system design, also favour liquid fuels
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