

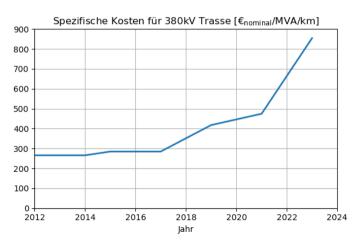
Managing Uncertainty in Sector-Coupled Scenarios for Climate Neutrality

Tom Brown, Fabian Neumann t.brown@tu-berlin.de, Department of Digital Transformation in Energy Systems, TU Berlin IEA Wind Task 25/63, Berlin, 6th October 2025

Unless otherwise stated, graphics and text are Copyright ©Tom Brown, 2025. Graphics and text for which no other attribution are given are licensed under a Creative Commons Attribution 4.0 International Licence.

3 Thoughts on Managing Uncertainty in a Fragmenting World

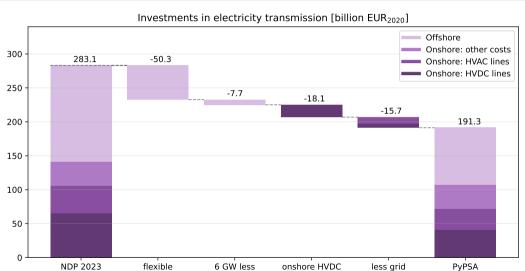
- Global restructuring is a source of uncertainty in system planning (examples of energy-intensive value chains, supply-chain bottlenecks for grid and gas turbines)
- Need agile solutions to manage infrastructure uncertainty (example of near-optimal use of methanol for backup)
- VRE and electrification magnify need for resilience and risk-averse planning (example of black-start capable regions)


Major uncertainties for supply

chains affect planning

Supply chain bottlenecks causing a reassessment of planning

Demand for transmission lines and transformers (due to VRE, electrification) and gas turbines (due to data centres) has led to **supply bottlenecks**, costs growing 3-5x. German transmission expansion costs escalated from 2023 to 2025 from 320 bn€ to 440 bn€. Need to reassess!

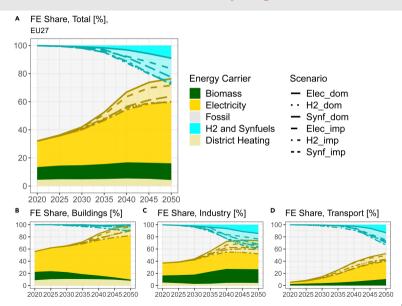


Electricity transmission savings from Ariadne Scenario Report

connection

offshore wind

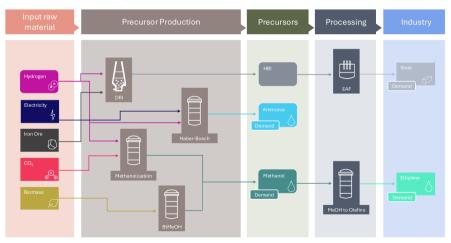
underground


to overhead

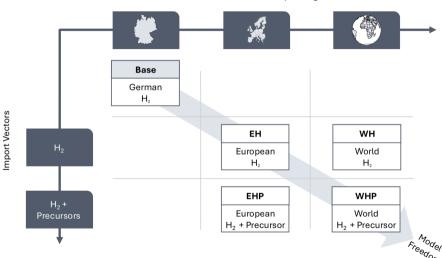
expansion

offshore wind

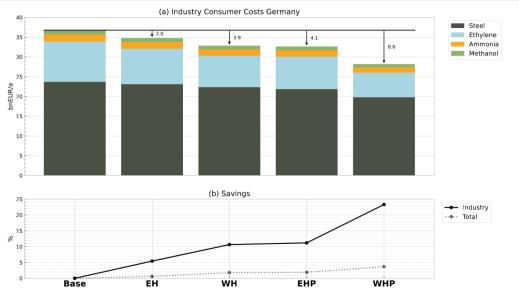
Scenarios show increase in electrification, hydrogen for some of rest



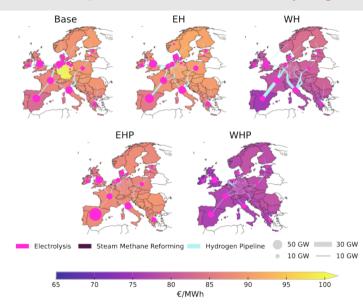
Transport derivates, not hydrogen


Most of hydrogen is used to produce **derivatives** like ammonia, direct-reduced iron (DRI) and methanol, precursors for energy-intensive industry and fuels for transport.

Germany could import hydrogen or precursors from Europe, World



Potential Production and Import Regions


Importing from World saves most costs, from Europe 48% of that

Precursor import reduces prices & infrastructure for hydrogen

Near-optimal solutions for agility:

methanol

But which hydrogen demand sectors really need actual hydrogen?

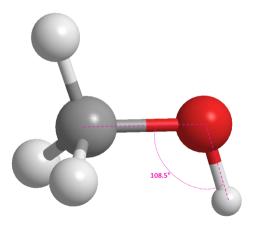
All potential hydrogen demand sectors can be served by **electrification** or by **hydrogen derivatives** (e-fuels like ammonia, methanol, etc.) that are easier to transport and store.

sector	alternatives if hydrogen not available
heavy duty trucks	electrify
iron direct reduction	do reduction close to ore / in cluster
ammonia	synthesise close to hydrogen source
high value chemicals	methanol or naphtha
process heat	electrify/use e-fuels
shipping	methanol or ammonia
aviation	kerosene from methanol or Fischer-Tropsch
backup power & district heat	use derivative fuels (methane, methanol)

[⇒] There is **no strict need** for hydrogen outside of industry clusters.

Challenges with hydrogen economy

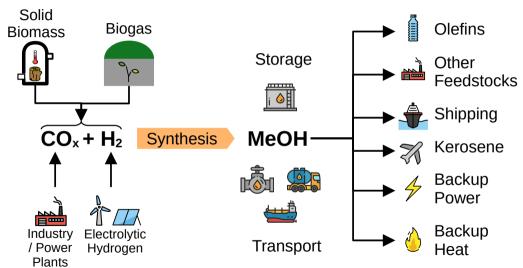
A hydrogen economy comes with **several challenges**:


- The molecule size is small, making it easy to leak and e.g. embrittle steel
- The volumetric density is low, making storage and transport difficult
- Salt deposits necessary easy underground storage in caverns are **not widely available**
- Vehicular transport is costly, pipeline network is necessary
- ullet Hydrogen is an **indirect greenhouse gas** with GWP100 of 11.6 ± 2.8
- The widespread usage of a new gas requires a coordinated scale-up of lumpy GW-scale pipelines, storage, supply and demand

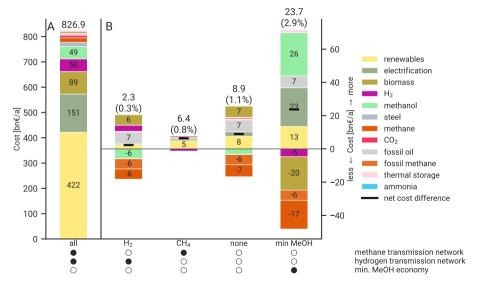
Introducing methanol

Methanol, the simplest alcohol CH₃OH can fit the bill for many non-electric sectors.

Advantages: liquid, easy to store/transport, widely traded, burns cleanly. Don't drink it!


Idea: 'Electrification plus minimal methanol economy'

- Electrify as much as possible
- Use hydrogen in clusters for sectors where really needed (ammonia, iron ore reduction)
- Use methanol as a gap-filler for the rest (backup power & heat, shipping, aviation, chemical industry)
- Methanol is more easily **storeable and transportable** than hydrogen (liquid at RTP)
- Methanol scales down to MW-scale use cases without lumpiness of big infrastructure (frictions and non-linearities not seen by models)
- (E-)biomethanol can absorb sustainable carbon from **decentral biomass and wastes**, then be used directly in industry or dense fuels (carbon management)


Methanol as platform for hard-to-electrify

Methanol instead of gas/hydrogen grid only 3% more expensive

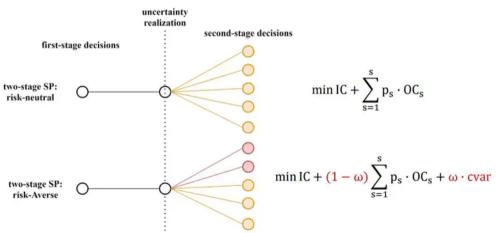
Resilience: Network Restoration

After a Blackout

Designing a resilient system

- Electrified building heating and transport make resilient system design paramount
- Can each region black-start and run for two weeks during system restoration after a full blackout? During a cold wind lull?
- Are we sure gas or hydrogen networks would function during a blackout? Electronics in compressor stations are vulnerable, cf. Texas in Feb 2021 for unexpected issues.

Simple, robust solution: peaker capacity with methanol tanks


- Put turbines or motors to cover winter peak in each region, next to a giant methanol tank
- Can also run as synchronous condenser to provide reactive power, fault current, inertia
- Methanol tanks cost just 0.01-0.05 €/kWh
- Single 200,000 m³ tank can store **880 GWh**
- Can be built anywhere, take up little space
- Can be dimensioned to provide resilience against low wind years, volcanos, infrastructure outages, sabotage, blackouts

PyPSA v1.0: stochastic and risk-averse optimisation

Two-stage stochastic optimisation (first investments, then uncertainty on e.g. gas price or hydrogen volume) allows for Conditional Value-at-Risk (CVaR) formulation of risk-aversion.

Conclusions

Conclusions

- Global restructuring of energy-intensive value chains as well as supply bottlenecks are examples of uncertainty strongly affecting infrastructure planning
- Need for agile, near-optimal solutions that avoid infrastructure lock-ins
- A minimal methanol economy avoids long-distance transport of methane or hydrogen, de-links the scale-up of infrastructures (storage, pipelines), avoids frictions of hydrogen
- Using methanol in this way as a gap filler for backup power and heat is only 24 billion euros per year (3% of system cost) more expensive than a methane/hydrogen system
- Increasing reliance on the power system means we need to focus on resilience
- System restoration needs could alter system design, also favour liquid fuels