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Scenarios

Philipp Glaum, Fabian Neumann, Markus Millinger, Tom Brown

Electrifying sectors like land transport and building heating is a cost-effective strategy for decarbonisation. For harder-to-abate sectors
that require fuels for their density or chemical properties, like long-haul aviation, shipping, backup power or iron ore reduction,
electrolytic hydrogen and its derivatives are often proposed as part of a “hydrogen economy’. However, hydrogen itself is challenging to
transport and store because of its small molecule size and low volumetric density; the build-up of a pipeline network needs close
coordination with demand, supply and storage. We present a “minimal methanol economy' as an alternative concept for filling the gaps
that electrification cannot reach. As a liguid at ambient conditions, methanol is easy to transport and store; it scales down to low-
volume use cases without the lumpiness of hydrogen pipelines; it is a better drop-in fuel to replace methane; it can help integrate
decentralised biomass wastes and residues into the energy system:; it is needed anyway in large volumes as a feedstock for industry
and transport fuels. We show in an energy system model for Europe that deep decarbonisation has lowest cost when hydrogen can be
widely transported and used for backup power and heat, but a methanol-based system is only \bneuro{24} more expensive in the
default scenario (3\% of system costs). This small increase is robust across varying assumptions about carbon sequestration, green
imports and biomass availability. We argue that this modest expense is justified because methanol avoids many of the challenges in
scaling up and regulating hydrogen infrastructure.

Source: Glaum et al, 2025
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Hydrogen: a solution for sectors that can’t be electrified? l'ﬁ
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But which hydrogen demand sectors really need actual hydrogen? l'ﬁ

Universitat
Berlin

All potential hydrogen demand sectors can be served by electrification or by hydrogen
derivatives (e-fuels like ammonia, methanol, etc.) that are easier to transport and store.

sector alternatives if hydrogen not available
heavy duty trucks electrify

iron direct reduction do reduction close to ore / in cluster
ammonia synthesise close to hydrogen source

high value chemicals methanol or naphtha

process heat electrify/use e-fuels

shipping methanol or ammonia

aviation kerosene from methanol or Fischer-Tropsch

backup power & district heat use derivative fuels (methane, methanol)

= There is no strict need for hydrogen outside of industry clusters.



Challenges with hydrogen "hllﬁ
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A hydrogen economy comes with several challenges:

e The molecule size is small, making it easy to leak and e.g. embrittle steel

e The volumetric density is low, making storage and transport difficult

Salt deposits necessary easy underground storage in caverns are not widely available

Vehicular transport is costly, pipeline network is necessary

Hydrogen is an indirect greenhouse gas with GWP100 of 11.6 +2.8

e The widespread usage of a new gas requires a coordinated scale-up of lumpy GW-scale
pipelines, storage, supply and demand



Introducing methanol J::c:;;;:l'ﬁ
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Methanol, the simplest alcohol CH30H, can fit the bill for many non-electric sectors.

Advantages: liquid, easy to store/transport, widely traded, burns cleanly. Don't drink it!

5
Source: Wikipedia; Yves Meur



Idea: ‘Electrification plus minimal methanol economy’ H"E
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e Electrify as much as possible
e Use hydrogen in clusters for sectors where really needed (ammonia, iron ore reduction)

e Use methanol as a gap-filler for the rest (backup power & heat, shipping, aviation,
chemical industry)

e Methanol is more easily storeable and transportable than hydrogen (liquid at RTP)

e Methanol scales down to MW-scale use cases without lumpiness of big infrastructure
(frictions and non-linearities not seen by models)

e (E-)biomethanol can absorb sustainable carbon from decentral biomass and wastes,
then be used directly in industry or dense fuels (carbon management)



Methanol as platform for hard-to-electrify
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Explore in energy model PyPSA-Eur for net zero CO, emissions l'ﬁ
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Use full energy system model PyPSA-Eur with net zero CO, emissions, hourly modelling,
100 regions, biomass limited to wastes and residues, 200 MtCO,/a limit on sequestration.
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Five main scenarios remove gaseous energy networks l'E
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Scenarios contrast gap-fillers for power and heat: hydrogen, methane and methanol.

e All Networks (all): both hydrogen and methane transmission networks.
e Only Methane Network (CH,): only methane transmission network.
e Only Hydrogen Network (H,): only hydrogen transmission network.

e No Gaseous Fuel Networks (none): neither hydrogen nor methane transmission
networks, but does allow local distribution of hydrogen and methane inside the regions.

e Minimal Methanol Economy (min. MeOH): neither hydrogen nor methane
transmission networks, and forbids gaseous distribution inside the regions. Hydrogen may
only be used captively inside industrial facilities for ammonia, steel, methanol and kerosene
production. No methane is produced and biomass cannot be used directly in power plants.
Methanol must be used for all backup heat and power plants.

All scenarios allow the transport of oil, methanol, biomass, carbon dioxide and electricity.



Methane and Hydrogen Networks for ‘All Networks’ scenario J::S:::.:::'.E
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Gas network serves backup power & heat; H, network serves steel, ammonia and methanol.
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Scenario system cost comparison: methanol only 3% more
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Energy balances: methanol
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Dispatchable generation: switch from biomass+gas to methanol I'E
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Final energy supply dominated by electricity and methanol ..E
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Production costs for different end use sectors
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Biomethanol can be supplemented with green hydrogen to use excess CO,: e-biomethanol.
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Methanol for backup power is used rarely llﬁ
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Backup power runs during cold dark wind lulls, primarily CHP to support district heating.
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Biomethanol production is spread around the continent
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Sensitivity (CO; network, relocation, imports, sequestration, biomass)
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Cost increase to minimal methanol economy (bottom row) robust across sensitivity analysis.
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Conclusions onse ] 'E

Berlin

e Methanol is a scaleable and flexible solution for hard-to-electrify sectors and carbon
management (e.g. absorbing sustainable carbon from decentral biomass)

e Green methanol will be needed in large volumes for shipping, chemicals and aviation,
especially if sequestration capacity is scarce

e A minimal methanol economy avoids long-distance transport of methane or hydrogen in
pipelines, and uses methanol instead of these gases in remaining uses

e Using methanol in this way as a gap filler for backup power and heat is only 24 billion
euros per year (3% of system cost) more expensive than a methane/hydrogen system

e Methanol de-links the scale-up of infrastructures (storage, pipelines), avoids frictions of
hydrogen, is a drop-in replacement for methane, allows easier regulation

19
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Problem: salt deposits for hydrogen caverns are highly localised I'E

Salt Deposits (geological ages)
Quaternary
B Tertiary
I Cretaceous
B Jurassic
I Triassic-Jurassic
Triassic
B Permian-Triassic
I Permian
I Carboniferous
Il Devonian-Carboniferous
B Devonian
B Silurian-Devonian
| Ordovician-Carboniferous
B Ordovician-Silurian
B Precambrian-Cambrian
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Topographic data by Natural Earth (naturalearthdata.com)
21

Source: Solution Mining Research Institute
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Zoom on salt deposits in Europe and US ..E
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Large methanol tanks can be built cheaply anywhere

e Methanol tanks cost just
0.01-0.05 €/kWh

e Single 200,000 m3 tank can
store 880 GWh

e Can be built anywhere, take
up little space

e CO, and O, stored
cryogenically

e Can be dimensioned to
provide resilience against
low wind years, volcanos and
infrastructure outages

Source: Wikipedia
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Scaleability down to 200 MW ﬂﬁ
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Economies of scale remain down to 200 MW (electrolyser power). = Interesting for smaller
autarkic regions, such as islands or data centres. Also good for fast, modular iteration.
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Pros and cons versus other chemical storage '.E
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e Methane: similar costs and efficiencies to methanol, can re-use existing infrastructure like
methanol. Disadvantage of requiring pressurisation for storage and transport, leakage as
greenhouse gas, needs GW economies of scale, could prolong fossil gas.

e Ammonia: has advantage of avoiding carbon cycle. But toxic, needs cryogenic storage,
storage and transport is highly regulated, ammonia turbines have low TRL, nitrogen oxide
emissions mean mitigation necessary.

e Liquid hydrogen: LH, requires constant cooling power, less attractive for ULDES.

e Liquid organic hydrogen carrier: LOHC similar to methanol storage, but more expensive
and lower TRL. Waste heat from power generation can be used for dehydrogenation.

25



Avoiding cycling carbon dioxide and direct air capture l'ﬁ
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In short-term can take CO, from e.g. biogas, or convert all biogas to e-bio-methanol. But
mid-term this CO, is needed by shipping, aviation and industry = better to cycle if possible.
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What about methane and direct use of bioenergy? "E
Methane
e There are very few sectors that need methane (beyond building heating until phase out is

complete), whereas methanol has many uses; CH; = lumpy pipelines

e Methane should be avoided in transport because of engine slippage, and in general
because of leakage (possible to regulate, but in practice difficult)

Direct use of bioenergy
e Uses should be prioritised to: industrial feedstock, dense fuels for aviation and shipping,
and carbon dioxide removal
e All of these needs can be met either with pure CO, (CDR) or methanol (MtO/A, MtK)

e Soak up all carbon close to source with biogas and e-Hj in bio-e-methanol plants, or
cellulosic ethanol, or gasification+synthesis

e Rare usage in CHP = want low-capex plant using homogenous fuel (i.e. avoid solids) .
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