Ultra-long-duration energy storage anywhere: methanol with carbon cycling

Tom Brown (TU Berlin), Johannes Hampp (PIK)

t.brown@tu-berlin.de, Department of Digital Transformation in Energy Systems, TU Berlin

Engineers Ireland webinar, 1st November 2023

Unless otherwise stated, graphics and text are Copyright (C)Tom Brown, 2023. Graphics and text for which no other attribution are given are licensed under a Creative Commons Attribution 4.0 International Licence.

Table of Contents

1. The Challenge
2. A Solution: Methanol Storage with Carbon Cycling
3. Plug for Open Modelling
4. Conclusions

The Challenge

- Variability of wind and solar requires storage for multiple days

- Batteries cost $150-250 € / \mathrm{kWh}$, only suitable for a few hours
- Hydrogen pressure vessels cost $15-50 € / \mathrm{kWh}$, still too expensive
- Underground salt caverns for hydrogen cost $0.1-0.5 € / \mathrm{kWh}$, suitable for long-duration storage, dominant concept in research

Inter-annual variations of wind and solar

Particularly wind shows decadal cycles and strong inter-annual variability.
\Rightarrow Need ultra-long-duration energy storage (ULDES), i.e. >100 hours.

Establised idea: store hydrogen in salt caverns, transport by pipeline

Many countries plan to store hydrogen in solution-mined salt caverns and transport hydrogen in pipelines (can reuse fossil gas infrastructure for both).

Problem: salt deposits for hydrogen caverns are highly localised

Zoom on salt deposits in Europe and US

교

Tertiary salt deposit Mesozoic salt deposit Range of Mesozoic salt above Permian
Paleozoic salt deposit (Permian) Zechstein
Paleozoic salt deposit (Permian Rotliegend below Zechstein

Salt cavern fields

- Gas Storage
- Storage of Crude Oill \& LPG, Brine Production

Hydrogen versus its derivatives

Storing hydrogen in underground salt caverns has several potential issues:

- Salt deposits may be lacking
- Or may require GW-scale power transmission or hydrogen pipeline to access salt locations
- Hydrogen can leak with global warming impacts
- Caverns and transport infrastructure can be subject to local pushback

Hydrogen versus its derivatives

Storing hydrogen in underground salt caverns has several potential issues:

- Salt deposits may be lacking
- Or may require GW-scale power transmission or hydrogen pipeline to access salt locations
- Hydrogen can leak with global warming impacts
- Caverns and transport infrastructure can be subject to local pushback

But looking to wider hydrogen derivatives we know we need

- Ammonia for fertiliser, perhaps shipping
- Carbonaceous fuels for aviation, shipping and chemical feedstocks

Why not use these for storage instead?

A Solution: Methanol Storage with Carbon Cycling

Store energy as methanol; combust methanol in pure oxygen from electrolysis in Allam cycle turbine; capture pure carbon dioxide; then cycle for methanol synthesis with green hydrogen.

- Methanol tanks cost just 0.01-0.05 $€ / \mathrm{kWh}$
- Single $200,000 \mathrm{~m}^{3}$ tank can store 880 GWh
- Can be built anywhere, take up little space
- CO_{2} and O_{2} stored cryogenically
- Can be dimensioned to provide resilience against low wind years, volcanos and
 infrastructure outages

All components are demonstrated at scale

A $50 \mathrm{MW}_{\text {th }}$ Allam cycle turbine already operating for years in Texas; $300 \mathrm{MW}_{e l}$ plants to be commissioned by 2026. George Olah Renewable Methanol plant in Iceland commissioned in 2011 produces 4000 tons per year. Megaton methanol plants run in China on gasified coal.

Study design

Optimise wind, solar, batteries plus one of following chemical carriers over 71 historical weather years (1950-2020) for Germany, Spain and UK.

- H_{2} pressure vessel - hydrogen storage in aboveground steel pressure vessels
- H_{2} salt cavern - hydrogen storage in underground salt caverns (round-trip $\sim 38 \%$)
- MeOH Allam CCU - methanol storage, all storage in aboveground steel tanks or pressure vessels, CO_{2} captured from Allam cycle turbine (round-trip $\sim 35 \%$)
- MeOH CCGT DAC/bio - methanol storage, all storage in aboveground steel tanks or pressure vessels, CCGT without CO_{2} capture instead of Allam, all CO_{2} for methanol synthesis from direct air capture (or biogenic sources)

Methanol system much cheaper than H_{2} pressure vessels where caverns not available; still $16-20 \%$ more expensive than salt caverns, but if Allam cycle costs reduce, only $6-7 \%$ more.

Similar results in Ireland, France and Sweden.

Filling levels of storage in days of electricity demand

Methanol stored over many years for multi-year reductions in wind output. Storage large enough to cover 92 days of electricity demand.

13% of available wind and solar is curtailed, a further 13% lost in storage conversion.

Scaleability down to 200 MW

Economies of scale remain down to 200 MW (electrolyser power). \Rightarrow Interesting for smaller autarkic regions, such as islands or data centres. Also good for fast, modular iteration.

Pros and cons versus other chemical storage

- Methane: similar costs and efficiencies to methanol, can re-use existing infrastructure like methanol. Disadvantage of requiring pressurisation for storage and transport, leakage as greenhouse gas, needs GW economies of scale, could prolong fossil gas.
- Ammonia: has advantage of avoiding carbon cycle. But toxic, needs cryogenic storage, storage and transport is highly regulated, ammonia turbines have low TRL, nitrogen oxide emissions mean mitigation necessary.
- Liquid hydrogen: LH_{2} requires constant cooling power, less attractive for ULDES.
- Liquid organic hydrogen carrier: LOHC similar to methanol storage, but more expensive and lower TRL. Waste heat from power generation can be used for dehydrogenation.

Sensitivity to cost assumptions

Effects of halving Allam cycle investment cost (from $1832 € / \mathrm{kW}$ to $916 € / \mathrm{kW}$), doubling DAC investment cost (raises CO_{2} cost in Germany from $202 € / \mathrm{tCO}_{2}$ to $316 € / \mathrm{tCO}_{2}$).

Sensitivity to flexibility assumptions

Fossil methanol synthesis typically runs with high capacity factors. Here we explore varying the minimum part load level (from 0% to 50%) and the hourly ramping limit (from 10% to 5%).

Partload with different flexibility assumptions

교

Avoiding cycling carbon dioxide and direct air capture

In short-term can take CO_{2} from e.g. biogas, or convert all biogas to e-bio-methanol. But mid-term this CO_{2} is needed by shipping and industry \Rightarrow better to cycle if possible.

Figure 4: The process flow of bio-methanol production Source: Lemvig Biogas

Figure 5: Energy balance Source: Lemvig Biogas

Plug for Open Modelling

What is open modelling?

Open energy modelling means modelling with open software, open data and open publishing. Open means that anybody is free to download the software/data/publications, inspect it, machine process it, share it with others, modify it, and redistribute the changes.

This is typically done by uploading the model to an online platform with an open licence telling users what their reuse rights are.
The whole pipeline should be open:
open data
open source open data
open access

Python for Power System Analysis (PyPSA)

- Open source tool for modelling energy systems at high resolution.
- Fills missing gap between power flow software (e.g. PowerFactory, MATPOWER) and energy system simulation software (e.g. PLEXOS, TIMES, OSeMOSYS).
- Good grid modelling is increasingly important, for integration of renewables and electrification of transport, heating and industry.

PyPSA is available on GitHub. It is used worldwide by researchers, consultants, TSOs and NGOs.

Integrated capacity expansion for electricity (left) and hydrogen (right)
Technische Universität Berlin

-10

8

- 6
-4
-2
-0

24

How do we capture, utilise, transport and sequester carbon?

- Hydrogen economy is also linked to carbon dioxide management
- Need CCS for process emissions, CCU for synfuels and basic chemicals, CDR for unabatable and negative emissions
- For synthetic hydrocarbons, do we transport hydrogen to carbon sources, or carbon to hydrogen sources?
- Can we avoid hydrogen grid altogether and transport only CO_{2}, CH_{4} and MeOH ?

Conclusions

Conclusions

- Systems built on wind and solar will need long-duration storage both for variability and resilience against rare extreme events
- Where salt deposits are not available, methanol storage provides an attractive alternative, whereby carbon is captured and cycled back to synthesis
- System costs are much lower than using hydrogen pressure vessels; costs are 6-20\% higher than with hydrogen caverns, depending on cost assumptions
- By providing storage for many days, a methanol-based system is resilient against low-wind years, volcano eruptions and infrastructure interruptions
- Further research needed on synthesis flexibility, Allam cycle and system integration

Sensitivity to seasonal demand

Suppose a third of demand comes from space heat pumps with seasonal demand.

Sensitivity to seasonal demand

Costs rise in all scenarios with 33% seasonal demand coming from heat pumps.

Sensitivity to CCS

Having both methanol and salt caverns; allowing CCS in Allam with fossil gas at 30 and $50 € / \mathrm{MWh}_{\mathrm{th}}$.

