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Goals of paper e ] 'E

e Explore import of green energy to Europe: volumes, costs and network infrastructure

e Couple an energy system model of Europe with infrastructure (PyPSA-Eur) to global
production cost model for green fuels and materials (TRACE)

e Green imports allowed from: hydrogen (pipeline and ship), ammonia, methane, methanol,
Fischer-Tropsch products, steel

e Model is greenfield-ish to represent 2040-50 (path dependencies not modelled)

e Steel and basic chemicals industries allowed to move within Europe (e.g. to Spain)
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Impact of different imports on system costs reansoe [
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NB: Results very sensitive to inputs like electrolyser cost and WACC.
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Energy imports distribution local-imported ”..E

Universitat
Berlin

B domestic W import ) total
P import share [%] supply
1[)0 BD 60 4D ZD D

electﬂﬂlty 5821 TWh
hydrogen 27% 73°r | 1918 TWh

ammonla ' " 90% ! ‘ 7% 92TWh

mtn—_ 632 TWh
e
FischerTropsh 1026 T
s«eeu s2m

20 40 60 BG 100
domestic share [%]
0 20 40 60 80 100 %
i

1 ' 1 L | [ I i 1 "
import mix 1400 647 555

| ' I '
0 50[} 1 DDD 1500 2000 2500 TWh
wm hydrogen (pipeline)  mwm steel (ship) ammonia (ship)
W electricity (HVDC) Fischer-Tropsch (ship) ~ ©# methane (ship)
0 methanol (ship)

Source: Neumann et al, 2024


https://arxiv.org/abs/2404.03927

Production costs domestic versus imported for ‘no imports’ l'ﬁ
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NB: domestic and import costs very close for hydrogen and ammonia (since e.g. Spain in
Europe competes with MENA); sales of waste heat provide revenue.
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Production costs domestic versus imported for ‘all imports’
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Cost sensitivity for Fischer-Tropsch fuels
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Factor Change Unit  Change  Unit
higher WACC of 12% (e.g. high project risk) +431 €/MWh +39.3 %
higher WACC of 10% (e.g. high project risk) +253  €/MWh +23.0 %
higher WACC of 8% (e.g. high project risk) +82 €/MWh +7.4 %
higher direct air capture investment cost (+200%) +558 €/MWh +50.8 %
higher direct air capture investment cost (+100%) +281 €/MWh +25.6 %
higher direct air capture investment cost (+50%) +141  €/MWh +12.9 %
higher direct air capture investment cost (+25%) +7.1  €/MWh +6.5 %
higher electrolysis investment cost (+200%) +292 €/MWh +26.6 %
higher electrolysis investment cost (+100%) +16.7  €/MWh +15.2 %
higher electrolysis investment cost (+50%) +9.0 €/MWh +8.2 %
higher electrolysis investment cost (+25%) +47  €/MWh +4.3 %
Argentina and Chile not available for export +10.1  €/MWh +9.2 %
lower WACC of 3% (e.g. government guarantees) -295 €/MWh -26.8 %
lower WACC of 5% (e.g. government guarantees) -155  €/MWh -14.1 %
lower WACC of 6% (e.g. government guarantees) -80 €/MWh 7.2 %
sell excess curtailed electricity at 40 €/ MWh -247 €/MWh -22.6 %
sell excess curtailed electricity at 30 €/ MWh -156 €/MWh -14.2 %
sell excess curtailed electricity at 20 €/ MWh -80 €/MWh 7.2 %
option to use available biogenic or cycled CO; for 60 €/t -21.7  €/MWh -19.7 %
option to use available biogenic or cycled CO; for 80 €/t -16.1  €/MWh -14.7 %
option to use available biogenic or cycled CO, for 100 €/t -106  €/MWh -9.7 %
option to build geological hydrogen storage at 2.4 €/kWh (reduction by 95%) -82 €/MWh 7.4 %
option to use power-to-X waste heat streams for direct air capture -38 €/MWh -3.4 %
highly flexible operation of fuel synthesis plant (20% minimum part-load instead of 70%) -54 €/MWh -4.9 %

Supplementary Table 1: Examples for potential import cost increases or decreases. The table presents cost sensitivities in absolute and
relative terms based on the supply chain for producing Fischer-Tropsch fuels in Argentina for export to Europe. The reference fuel import cost

for this case is 109.8 €/ MWh. Responses to changes in the input assumptions are not additive.

Source: Neumann et al, 2024
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Energy imports sweep with cost sensitivities -30% to +20%
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Energy infrastructure map for ‘no imports’
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Energy infrastructure map for ‘all imports’ wansce E
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Don’t forget the carbon network

Captured Carbon Balance (CO,-Grid Scenario)
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Conclusions onse ] 'E
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e Results highly sensitive to inputs (WACC, electrolyser costs, waste heat, etc.)
e Cost-benefit for 1000-2000 TWh/a green imports to Europe, but diminishing returns
e Benefit seems clearest for import of hydrogen by pipeline from MENA, steel and methanol

e Some advantages of domestic production out-weigh the ‘renewable pull’ of abundant
renewables outside Europe: flexible demand for local VRE integration, use of local
biogenic CO, and waste heat integration to district heating

e The import strategy has significant infrastructure impacts that need to be
thought-through - if infrastructure is delayed, may favour more imports

e Imports of ~1000 TWh/a and some H2 pipelines from coast to inland appear robust

e Non-cost factors may drive infrastructure and import strategies: geopolitical
considerations, local jobs, building simple & easy-to-implement/regulate systems,
reuse of existing infrastructure, resilience of supply chains, diversification, and land usage

14
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CCU and CCS take CO, from sustainable biomass and process emissions.
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(a) cost reductions applied to all carriers but electricity (b) cost reductions only applied to carbonaceous fuels
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Case for Electrification plus
Small Methanol Economy




Research hypotheses oo | 'E

e There is a potential competition between hydrogen and carbon transport; use CCS with
fossil fuels, or CCU with synfuels to avoid most hydrogen needs (industry, power & heat)
e Most clear need of carbonaceous fuels: aviation, shipping, industry feedstocks

e How to get decentralised waste & residue biomass to these demands? Upgraded biogas?
Pyrolysis + transport? Small-scale methanol synthesis?

e Hydrogen hype largely driven by gas industry, but hard to transport, store, requires GW
infrastructure (pipelines, caverns), long deployment times, regulation difficult

e Models don’t see many of these frictions and non-linearities

e Potential of methanol to take care of all ‘hard-to-decarbonise’, scales down well to
multi-MW, easy to store and transport; needed anyway for industry & dense fuels

18



Which hydrogen demand sectors really need actual hydrogen? l'ﬁ
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For all hydrogen demand sectors there are alternatives to transporting hydrogen.

sector

alternatives if hydrogen not available

backup power & district heat
process heat

heavy duty trucks

iron direct reduction
ammonia

high value chemicals
shipping

aviation

use derivative fuels (e-methane, e-methanol)
electrify/use derivative fuels

use battery electric vehicles

industry relocates to cluster/abroad

industry relocates to cluster/abroad
transport derivative precursors instead
transport derivative fuels instead

transport derivative fuels instead

= There is no strict need for transporting hydrogen, but it may be easier/cost-optimal.

19



What we definitely need: carbon management
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Idea: ‘Electrification plus minimal methanol economy’ H"E
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e Electrify as much as possible
e Use hydrogen for sectors where really needed (ammonia, maybe steel)

e Where it is difficult or slow to scale up hydrogen (e.g. delays in building pipeline network,
technical problems with pipelines or turbines), consider methanol instead

e Methanol is more easily storeable and transportable than hydrogen
e Methanol scales down to small usage without lumpiness of big infrastructure

e Methanol can also be used for absorbing carbon from biomass and wastes (rather than
biogas or inhomogeneous solid products), then using directly in industry or dense fuels

e Cycle carbon whereever possible (e.g. in power sector, industry and shipping)

22



Methanol routes
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Source: IRENA, 2022


https://www.methanol.org/wp-content/uploads/2020/04/IRENA_Innovation_Renewable_Methanol_2021.pdf

What about methane and bioenergy? l.ﬁ
Methane
e There are very few sectors that need methane (beyond building heating until phase out is

complete), whereas methanol has many uses; CH; = lumpy pipelines

e Methane should be avoided in transport because of engine slippage, and in general
because of leakage (possible to regulate, but in practice difficult)

Biomass
e Uses should be prioritised to: industrial feedstock, dense fuels for aviation and shipping,
and carbon dioxide removal
e All of these needs can be met either with pure CO, (CDR) or methanol (MtO/A, MtK)

e Soak up all carbon close to source with biogas and e-Hj in bio-e-methanol plants, or
cellulosic ethanol, or gasification+synthesis

e Rare usage in CHP = want low-capex plant using homogenous fuel (i.e. avoid solids) 0



Backup Power and Heat from
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With only wind and solar, need long-duration storage l'ﬁ
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Variability of wind and solar
requires storage for multiple days

Batteries cost 150-250 €/kWh,
only suitable for a few hours

Hydrogen pressure vessels cost
15-50 €/kWh, still too expensive

Underground salt caverns for
hydrogen cost 0.1-0.5 €/kWh,
suitable for long-duration storage,
dominant concept in research

25

Source: Irish wind and load data



Inter-annual variations of wind and solar h"ﬁ
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Particularly wind shows decadal cycles and strong inter-annual variability.

= Need ultra-long-duration energy storage (ULDES), i.e. > 100 hours.
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Establised idea: store hydrogen in salt caverns, transport by pipeline

Many countries plan to store hydrogen in solution-mined salt caverns and transport

hydrogen in pipelines (can reuse fossil gas infrastructure for both).
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Problem: salt deposits for hydrogen caverns are highly localised I'E

Salt Deposits (geological ages)
Quaternary
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I Cretaceous
B Jurassic
I Triassic-Jurassic
Triassic
B Permian-Triassic
I Permian
I Carboniferous
Il Devonian-Carboniferous
B Devonian
B Silurian-Devonian
| Ordovician-Carboniferous
B Ordovician-Silurian
B Precambrian-Cambrian
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Topographic data by Natural Earth (naturalearthdata.com)
28

Source: Solution Mining Research Institute



https://energnet.eu/wp-content/uploads/2021/02/3-Hevin-Underground-Storage-H2-in-Salt.pdf

Zoom on salt deposits in Europe and US ..E
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Hydrogen versus its derivatives '.E
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Storing hydrogen in underground salt caverns has several potential issues:

e Salt deposits may be lacking
e Or may require GW-scale power transmission or hydrogen pipeline to access salt locations
e Hydrogen can leak with global warming impacts

e Caverns and transport infrastructure can be subject to local pushback

30



Hydrogen versus its derivatives '.E
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Storing hydrogen in underground salt caverns has several potential issues:

e Salt deposits may be lacking
e Or may require GW-scale power transmission or hydrogen pipeline to access salt locations
e Hydrogen can leak with global warming impacts

e Caverns and transport infrastructure can be subject to local pushback

But looking to wider hydrogen derivatives we know we need

e Ammonia for fertiliser, perhaps shipping
e Carbonaceous fuels for aviation, shipping and chemical feedstocks

Why not use these for storage instead?

30



Solution: store e-methanol, now only liquids stored above ground l'ﬁ
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Store energy as methanol; combust methanol in pure oxygen from electrolysis in Allam cycle
turbine; capture pure carbon dioxide; then cycle for methanol synthesis with green hydrogen.
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31
Source: Brown & Hampp 2023


https://doi.org/10.1016/j.joule.2023.10.001

Large methanol tanks can be built cheaply anywhere

e Methanol tanks cost just
0.01-0.05 €/kWh

e Single 200,000 m® tank can
store 880 GWh

e Can be built anywhere, take
up little space

e CO, and O, stored
cryogenically

e Can be dimensioned to
provide resilience against
low wind years, volcanos and
infrastructure outages

Source: Wikipedia

32


https://en.wikipedia.org/wiki/Storage_tank
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components are demonstrated at scale I'E
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A 50 MWy, Allam cycle turbine already operating for years in Texas; 300 MWy, plants to be
commissioned by 2026. George Olah Renewable Methanol plant in Iceland commissioned in
2011 produces 4000 tons per year. Megaton methanol plants run in China on gasified coal.

33

Source: NET Power, Carbon Recycling International



https://www.powermag.com/breakthrough-net-powers-allam-cycle-test-facility-delivers-first-power-to-ercot-grid/
https://www.carbonrecycling.is/project-goplant

Study design onse ] 'E

Optimise wind, solar, batteries plus one of following chemical carriers over 71 historical
weather years (1950-2020) for Germany, Spain and UK.

e H, pressure vessel - hydrogen storage in aboveground steel pressure vessels

e H, salt cavern - hydrogen storage in underground salt caverns (round-trip ~ 38%)

e MeOH Allam CCU - methanol storage, all storage in aboveground steel tanks or pressure
vessels, CO; captured from Allam cycle turbine (round-trip ~ 35%)

e MeOH CCGT DAC/bio - methanol storage, all storage in aboveground steel tanks or
pressure vessels, CCGT without CO; capture instead of Allam, all CO, for methanol
synthesis from direct air capture (or biogenic sources)
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Average electricity costs: UK, Germany, Spain "E
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Methanol system much cheaper than H, pressure vessels where caverns not available; still
16-20% more expensive than salt caverns, but if Allam cycle costs reduce, only 6-7% more.
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Average electricity costs: Ireland, France, Sweden reansoe [ E
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Similar results in Ireland, France and Sweden.
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Filling levels of storage in days of electricity demand I.E
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Methanol stored over many years for multi-year reductions in wind output. Storage large
enough to cover 92 days of electricity demand.
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Less than 10% of electricity provided by stored e-fuel

sense ]
rsr!at
Berlin

13% of available wind and solar is curtailed, a further 13% lost in storage conversion.
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Scaleability down to 200 MW ﬂﬁ
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Economies of scale remain down to 200 MW (electrolyser power). = Interesting for smaller
autarkic regions, such as islands or data centres. Also good for fast, modular iteration.
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Pros and cons versus other chemical storage '.E
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e Methane: similar costs and efficiencies to methanol, can re-use existing infrastructure like
methanol. Disadvantage of requiring pressurisation for storage and transport, leakage as
greenhouse gas, needs GW economies of scale, could prolong fossil gas.

e Ammonia: has advantage of avoiding carbon cycle. But toxic, needs cryogenic storage,
storage and transport is highly regulated, ammonia turbines have low TRL, nitrogen oxide
emissions mean mitigation necessary.

e Liquid hydrogen: LH, requires constant cooling power, less attractive for ULDES.

e Liquid organic hydrogen carrier: LOHC similar to methanol storage, but more expensive
and lower TRL. Waste heat from power generation can be used for dehydrogenation.
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Sensitivity to cost assumptions
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Effects of halving Allam cycle investment cost (from 1832 €/kW to 916 €/kW), doubling DAC
investment cost (raises CO, cost in Germany from 202 €/tCO; to 316 €/tCOx).
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Sensitivity to flexibility assumptions "E
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Fossil methanol synthesis typically runs with high capacity factors. Here we explore varying the
minimum part load level (from 0% to 50%) and the hourly ramping limit (from 10% to 5%).
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Partload with different flexibility assumptions remice '.E
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Avoiding cycling carbon dioxide and direct air capture l'ﬁ

Universitat
Berlin

In short-term can take CO, from e.g. biogas, or convert all biogas to e-bio-methanol. But
mid-term this CO5 is needed by shipping and industry = better to cycle if possible.
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Figure 4: The process flow of bio-methanol production  Figure 5: Energy balance
Source: Lemvig Biogas Source: Lemvig Biogas
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Conclusions




Conclusions onse ] 'E
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e Methanol is a scaleable and flexible solution for hard-to-electrify sectors and carbon
management (from biomass to industry/fuels)

e Systems built on wind and solar will need long-duration storage both for variability and
resilience against rare extreme events

e Where salt deposits are not available, methanol storage provides an attractive
alternative, whereby carbon is captured and cycled back to synthesis

e System costs are much lower than using hydrogen pressure vessels; costs are 6-20%
higher than with hydrogen caverns, depending on cost assumptions

e By providing storage for many days, a methanol-based system is resilient against low-wind
years, volcano eruptions and infrastructure interruptions

e Further research needed on synthesis flexibility, Allam cycle and system integration
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Sensitivity to seasonal demand "ﬁ
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Suppose a third of demand comes from space heat pumps with seasonal demand.
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Sensitivity to seasonal demand

Costs rise in all scenarios with 33% seasonal demand coming from heat pumps.

average system electricity cost [€/MWh]
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Sensitivity to CCS -. E
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Having both methanol and salt caverns; allowing CCS in Allam with fossil gas at 30 and
50 €/MWhyy,.
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