
Python for Power System Analysis (PyPSA)

Tom Brown, Jonas Hörsch, David Schlachtberger

Frankfurt Institute for Advanced Studies (FIAS), University of Frankfurt

6th Open Energy Modelling Initiative Workshop, Frankfurt, 19th April 2017

Python for Power System Analysis (PyPSA)

• Developed at Frankfurt Institute of

Advanced Studies by Tom Brown,

Jonas Hörsch and David Schlactberger

for the CoNDyNet project.

• Fills missing gap between load flow

software (e.g. MATPOWER,

PYPOWER, PowerFactory) and energy

system simulation software (e.g.

TIMES, calliope, oemof, OSeMOSYS).

• Good grid modelling is increasingly

important, for integration of

renewables and possible electrification

of transport and heating.
2

https://fias.uni-frankfurt.de/
https://fias.uni-frankfurt.de/
http://condynet.de/

Python for Power System Analysis (PyPSA)

The FIAS software PyPSA is online at http://pypsa.org/ and on github. It can do:

• Static power flow

• Linear optimal power flow (multiple

periods, unit commitment, storage,

coupling to other sectors)

• Security-constrained linear optimal

power flow

• Total electricity system investment

optimisation

3

http://pypsa.org/

Models

It has models for:

• meshed multiply-connected AC and DC networks, with controllable converters between AC

and DC networks

• standard types for lines and transformers following the implementation in pandapower

• conventional dispatchable generators with unit commitment

• generators with time-varying power availability, such as wind and solar generators

• storage units with efficiency losses

• simple hydroelectricity with inflow and spillage

• coupling with other energy carriers

• basic components out of which more complicated assets can be built, such as Combined

Heat and Power (CHP) units, heat pumps, resistive Power-to-Heat (P2H), Power-to-Gas

(P2G), battery electric vehicles (BEVs)
4

Models

Example of sector-coupling:

5

Components

Network Container for all other network components.

Bus Fundamental nodes to which all other components attach.

Load A consumer of energy.

Generator Generator whose feed-in can be flexible subject to minimum loading

or minimum down and up times, or variable according to a given time

series of availability.

Storage Unit A device which can shift energy from one time to another, subject to

efficiency losses.

Store A more fundamental storage object with no restrictions on charging

or discharging power.

Shunt Impedance An impedance in shunt to a bus.

Line A branch which connects two buses of the same voltage.

Transformer A branch which connects two buses of different voltages.

Link A branch with a controllable power flow between two buses.
6

Technical details

PyPSA is written and tested to be compatible with Python 2.7 and Python 3.5.

It leans heavily on the following Python packages:

• pandas for storing data about components and time series

• numpy and scipy for calculations, such as linear algebra and sparse matrix calculations

• pyomo for preparing optimisation problems (currently only linear)

• networkx for some network calculations

• py.test for unit testing

• logging for managing messages

7

Design

• Network object is the overall container

• Components (buses, lines, transformers, links, generators, storage units) have static

properties (nominal power, etc.) stored in pandas DataFrames

• Time-varying data (e.g. load, solar/wind availability) also stored in pandas DataFrames,

indexed by a list of ‘snapshots’

• Pyomo for optimisation

• Internal use of per unit power system quantities

• Set points (e.g. for loads, generators) are stored separately from actual dispatch points

• No GUI, use Jupyter notebooks

8

Power flow

In a power flow calculation, the user specifies the power dispatch of all dispatchable

components (loads, generators, storage units, stores and links) and then PyPSA computes the

resulting voltages in the network and hence the power flows in passive branches (lines and

transformers) based on their impedances. For an AC network we must have:

Sn = VnI
∗
n =

∑
m

VnY
∗
nmV

∗
m

where Sn = Pn + jQn is the apparent power at node n, In is the complex current, Vn is the

complex voltage and Ynm is the bus admittance matrix.

For short overhead transmission lines that are close to their natural loading, these equations

can be linearised to:

Pn =
∑
m

(KBKT)nmθm −
∑
`

Kn`b`θ
shift
`

where K is the incidence matrix of the network, B are the series susceptances, θn are the

voltage angles and θshift` are transformer phase-shifts.

9

PyPSA: Full non-linear power flow with Newton-Raphson

Benchmarked against PYPOWER and IEEE test cases:

import pypsa

from pypower.api import case118 as case

ppc = case()

network = pypsa.Network()

network.import_from_pypower_ppc(ppc)

network.pf()

print(network.generators_t.p)

print(network.generators_t.q)

print(network.buses_t.v_ang)

print(network.buses_t.v_mag)

10

Optimal power flow

PyPSA minimises the costs of generator dispatch gn,s,t at each node at each time t, and

investment in generator Gn,s and transmission capacity F`:

min
Gn,s ,F`,
gn,s,t ,f`,t

[∑
n,s,t

wton,sgn,s,t +
∑
n,s

cn,sGn,s +
∑
`

c`F`

]

subject to physical constraints (meeting energy demand, generator limits, storage consistency,

physical flow conditions, thermal limits of branches).

11

Main constraints 1/2

• Demand dn,t is always met by generation or transmission

dn,t =
∑
s

gn,s,t +
∑
`∈n

f`,t

• Dispatch gn,s,t cannot exceed availability ḡn,s,t

0 ≤ gn,s,t ≤ ḡn,s,t ≤ ḡn,s

• Installed capacity cannot exceed the installable potential ĝn,s

ḡn,s ≤ ĝn,s

• CO2 constraint is respected ∑
n,s,t

1

ηn,s
gn,s,ten,s ≤ CAP

12

Main constraints 2/2

• Storage consistency

en,s,t = ηwt
0 en,s,t−1 − η1wt [gn,s,t]

− + η−12 wt [gn,s,t]
+

• Flows f`,t have to by physical, i.e. obey Kirchhoff’s Current and Voltage Laws for the

linear load flow.

• New cycle-based formulations of the linear power flow are provided which are up to 20

times faster than standard angle-based formulations, see arXiv:1704.01881.

• Transmission flows cannot exceed capacities

|f`,t | ≤ P̄`

13

https://arxiv.org/abs/1704.01881

Example: linear OPF for a mixed AC-DC network

import pypsa

csv_folder_name=‘‘path/to/ac-dc-meshed/ac-dc-data’’

network = pypsa.Network(csv_folder_name)

solver_name = ‘‘glpk’’

network.lopf(snapshots=network.snapshots,solver_name)

print(network.generators.p_nom) #series for each gen

print(network.generators_t.p) #dataframe for each gen, snapshot

14

Example of LOPF in Germany

Using the SciGRID dataset, nodal pricing for a day of high wind shows divergent prices in

North and South Germany due to line overloading:

0

10

20

30

40

50

60

70

Lo
ca

ti
o
n
a
l
M

a
rg

in
a
l
P
ri

ce
 (

E
U

R
/M

W
h
)

0

15

30

45

60

75

90

Li
n
e
 l
o
a
d
in

g
 [

%
]

15

Example of investment optimisation in Europe

Using the GridKit dataset, investment optimisation for a 95% CO2 reduction compared to

1990, with no grid expansion allowed, results in solar+batteries in Southern Europe and

wind+hydrogen storage in the North:

offshore wind
onshore wind
solar
gas
PHS
hydro
hydrogen storage
battery storage

16

Network Clustering

Can cluster down the network, to reduce resolution while retaining important transmission lines:

17

Python for Power System Analysis (PyPSA)

• Documentation and example Jupyter notebooks showcasing open data, like SciGRID:

http://pypsa.org/

• Github: https://github.com/FRESNA/PyPSA

• Mailing list: https://groups.google.com/forum/#!forum/pypsa

18

http://scigrid.de/
http://pypsa.org/
https://github.com/FRESNA/PyPSA
https://groups.google.com/forum/#!forum/pypsa

PyPSA users

PyPSA is being actively used by around a dozen institutions (that we know of...) and the

website has been visited by people from 120+ countries:

19

