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Abstract

Sketch interface and math for PyPSA interface for multi-investment-period optimization with perfect foresight.
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1. Literature review

1.1. Model typology

Models optimize the net present value NPV of expenditures versus income in the energy system over several
decades (e.g. 2020-2050), discounting cash flows a years after the present by the discount factor (1 + r)−a for interest
rate r.

There are two ways of dealing with multi-horizon investment in the literature:

1. Using the full overnight cost in the year of investment
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2. Distributing annualised costs over the years in which the asset is active (lifetime years after build year)

Type 1 models include OSeMOSYS, DIMENSION, ESO, LUSYM, TIMES.
Type 2 models include SWITCH, Temoa, Balmorel and GENESYS2.
The problem with Type 1 is that the full cost of investments towards the end of the investment period (e.g. made

in 2050) is paid while the full benefit (electricity generation after 2050) is not seen. OSeMOSYS gets around this
by giving late investments a ‘salvage value’ for benefits after the investment period. DIMENSION gets around it by
running simulations beyond the period of interest (e.g. up to 2070) but at lower intra-year resolution. ESO doesn’t
deal with this issue. It caused the GENESYS team problems I think before they switched to Type 2.

Type 2 models bypass this problem by always considering the annualized costs in each investment period.
Type 2 models also allow to use a different, even technology-specific WACC for the annualized costs than the

global discount rate used for NPV. For example, in [1] a social discount rate of 2% was used for NPV, while a WACC
of 7% was used for investments.

Both models can have issues if the end-of-life of an asset lands in the middle of an investment period (e.g. asset is
dismantled in 2045 when we only have investment periods represented for 2030, 2040 and 2050).

Now for the mathematical formulaion.
Consider just power generation for simplicity. Gs [MW] represents the new generation capacity built for generator

s with build year bs at node ns with lifetime Ls. If the asset is built in year bs it is available from 1st Jan in year bs up
until 31st December in year bs + Ls − 1.

The specific investment cost is ks [ACMW−1]. The annualized investment cost is cs [ACMW−1a−1], which is related
to ks by:

ks =

Ls−1∑
b=0

cs

(1 + r)b (1)

This is assuming that the investment cost is paid back by a loan for the full lifetime; Temoa has the option of loan
lifetimes below the technology lifetime. ‘Loan’ could also be a mix of equity and debt.

The cost minimization objective for Type 1 then only has terms for generators built in year a:

min
{Gs,... }

A−1∑
a=0

1
(1 + r)a

 ∑
s|bs=a

ksGs + O&M, fuel, etc.

 (2)

The cost minimization objective for Type 2 is then:

min
{Gs,... }

A−1∑
a=0

1
(1 + r)a

 ∑
s|bs≤a<bs+Ls

csGs + O&M, fuel, etc.

 (3)

They are only equivalent if A→ ∞. Check this by substituting (1) into (2) and replacing the summation of a with
a new variable c = a + b. You get terms with a discount factor for A ≤ a < A + Ls.

1.2. Discussion of other models in the literature

1.2.1. OSeMOSYS
Developed by KTH and others.
https://osemosys.readthedocs.io/en/latest/manual/Structure%20of%20OSeMOSYS.html#equations

https://osemosys.readthedocs.io/en/latest/manual/Structure%20of%20OSeMOSYS.html#salvage-value

Type 1. Uses salvage value in final investment period to avoid end-of-horizon effects.

1.2.2. Temoa
Developed by Joe DeCarolis et al.
https://temoacloud.com/temoaproject/Documentation.html#objective-function

Type 2, but has a sophisticated approach that takes account of different technology-specific discount rates for the
loan (DRt for technology t) different from global discount rate GDR used for NPV, loan lifetimes LLNt,v for vintage
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(build year) v separate from lifetime LPt,v. P0 is beginning of the horizon and LPAt,v is the active lifetime before the
end of the horizon.

So that long-lived technologies (nuclear, coal) are not disadvantaged by their investment costs being paid off by
loans long before the full value over the lifetime is realised, the loan amortization is re-amortized with the GDR,
spreading it over the full technological lifetime.

1.2.3. DIMENSION
Developed by EWI [2].
Type 1. Run model after period of interest (e.g. to 2070) to avoid end-of-horizon effects.
[2]: ‘In addition, the model years 2060 and 2070 are included in order to account for long lifetimes of capital-

intensive grid and generation capacities.’

1.2.4. ESO
Developed by Imperial College (Clara Heuberger et al) [3].
Type 1 but ignores end-of-horizon.
[3]: “Towards 2050 the storage capacity stock reduces due to the end of lifetime of existing storage capacity to 2.9

GW in 2050. Additionally, as the end of the planning horizon is reached, no new capacity is build for years post-2050.
So called “end-of-horizon-effects” can be circumvented by accounting for expected cost/revenues beyond the end of
the planning horizon, however are outside the scope of this work.”

1.2.5. SWITCH
Developed by Hawaii (Matthias Fripp et al).
Type 2.
https://ars.els-cdn.com/content/image/1-s2.0-S2352711018301547-mmc1.pdf (Section 4.3.5)

1.2.6. Balmorel
Developed by DTU (Hans Ravn et al).
Type 2.
http://balmorel.com/images/downloads/model/BMS303-20190311.pdf

Separates social discount rate (“society’s perception of how future years’ costs and benefits shall be evaluated
today”) from the rate for annualisation (“to represent the actors’ (e.g., companies or TSOs) perception of financing
costs, alternatives, expectations to profit, risks, etc”).

1.2.7. GENESYS2
Developed by RWTH (Christian Bussar et al), not to be confused with GENESYS-MOD from DIW / TU Berlin.
GENESYS2 is Type 2 I think. I think GENESYS1 was Type 1, but they changed it.

1.2.8. LUSYM
Leuven University SYstem Model (LUSYM) [4] considers both myopic and perfect foresight models.
The perfect foresight model is Type 1 with salvage value.

1.2.9. PRIMES
Type 2 with different social versus financial discount rates, according to Marta Victoria.
EU Reference Scenario 2016, in which discount rates are much better explained (section 2.6.1 and annexe 4.4).
“Assessing transition scenarios which have different distributions over time of investments and benefits requires

in addition calculating present values, in which it is appropriate to use a social discount rate for discounting costs and
benefits occurring in the future.”

1.2.10. TODO: TIMES
[4] claims similar to LUSYM, i.e. Type 1 with salvage values.
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investment period a represents intra-year time periods Ta

2020 01.01.2020 - 31.12.2029 (summer,winter)
2030 01.01.2030 - 31.12.2049 (summer,winter)
2050 01.01.2050 - 31.12.2059 (spring,summer,autumn,winter)

Table 1: Investment periods in example.

index a investment_weightings wa energy_weightings va

2020
∑9

a=0(1 + r)−a 10
2030

∑29
a=10(1 + r)−a 20

2050
∑39

a=30(1 + r)−a 10

Table 2: network.investment_period_weightings wa for our example

1.2.11. TODO: PLEXOS
2. PyPSA suggested implementation and interface design

2.1. Overall

Use Type 2 since it takes better account of end-of-horizon effects and because it allows to use a separate discount
rate for the NPV discounting to the annualization of capital costs.

Things to be careful for:

• constraints on total wind capacity at any time at a location

• CO2 constraints on particular investment periods AND option to do budget over all investment periods

2.2. Code design principles

Should default to old single horizon behaviour.
It’s OK if it only works with pyomo=False as long as there is a warning of missing functionality for pyomo=True.

2.3. Example use case for data design

Consider power generation at a single node with a single load and the options of wind and gas generation.
The investment periods a under consideration are: 2020, 2030, 2050, see Table 1. Each period can represent a

different number of intervening years. For each investment period there are different intra-year time periods Ta to
represent load and weather conditions t ∈ Ta. These can vary in number and e.g. weather conditions, since users may
want a higher resolution in later years where there are more renewables and wind, and the weather may change due to
climate change.

I suggest a new pandas.DataFrame called network.investment_period_weightings analogous to network.snapshot_weightings
that encodes the investment weighting for the objective function wa for investment period a as well as the energy
weighting for CO2 constraints etc va, see Table 2 for our case. This allows the user to customize the weighting. This
would default to index= (now), weightings= (1, 1) with no multi-horizon optimization.

network.snapshotswould now have a pandas.MultiIndex, see Table 3 for an example network.snapshot_weightings
wa,t, where t runs over the intra-year time periods Ta for each investment period a.

For a load my_load, network.loads_t.p_set da,t would look like Table 4.
The generators would have a name s and have separate fields for the build year bs, node ns and lifetime Ls, see

Table 5. Note that some generators have build years BEFORE the first investment period, so these existing generators
take fixed capacity from p_nom. Note that lifetimes, capital costs, efficiencies, etc. can change depending on the build
year. The capital_cost here is now the fixed annual costs, including annuity and FOM.

Note that not all technologies need to be represented with build years in each investment period. You may want
to forbid new coal plants being built after 2020, or have new technologies like small modular nuclear reactors (SMR)
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index (a, t) snapshot_weightings wa,t

(2020,summer) 4380
(2020,winter) 4380
(2030,summer) 4380
(2030,winter) 4380
(2050,spring) 2190
(2050,summer) 2190
(2050,autumn) 2190
(2050,winter) 2190

Table 3: network.snapshot_weightings wa,t for our example

index (a, t) my_load

(2020,summer) 2
(2020,winter) 3
(2030,summer) 3
(2030,winter) 4
(2050,spring) 4
(2050,summer) 4
(2050,autumn) 5
(2050,winter) 5

Table 4: network.loads_t.p_set da,t for our example

only available from 2040. Some technologies like PV and wind will improve capacity factors over time with e.g.
better efficiencies and higher hub heights.

Note that the build_year and lifetime attributes are only used to determined whether the generator is active
in a particular investment period a. They are NOT used to annualize the costs to get the capital_cost - this is done
by the user. I can imagine situations (like transmission lines) where we set capital_cost based on 40 years, but
set lifetime to 100 years since we don’t know exactly when each line was built, but want it there in all investment
periods.

Note that the p_nom_max for each generator is now the installable limit for this build year.
We will need separate constraints for the total capacity Ḡr,n,a of each technology r (e.g. wind, solar) existing at

each node n in each year a that sums up the active assets for the total installable potentials for each technology at
each node. This can change with a if e.g. more or less land becomes available due to changes in agriculture / city
development.

The availability factors ḡs,a,t for generator s in investment period a at time t are given by network.generators_t.p_max_pu
like in Table 6. Availabilities for years where the generator is inactive are ignored and can be set to zero.

Results from optimization the generator optimal capacities network.generators.p_nom_opt for the active in-
vestment periods as well as the network.generators.p indexed and columned like network.generators_t.p_max_pu
in Table 6.

For Links, Lines, Stores, StorageUnits, Transformers, etc, just follow the scheme for Generators.

2.4. Optimisation problem in math

We have objection function of Type 2

min
{Gs,gs,a,t}

∑
a∈A

wa

 ∑
s|bs≤a<bs+Ls

csGs +
∑
t∈Ta

wa,tos,a,tgs,a,t


 (4)

Where now gs,a,t labels the generation of generator s in investment period a and time t.
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index s build_year bs lifetime Ls capital_cost cs

gas-10 2010 30 50
gas-20 2020 30 50
gas-30 2030 30 40
gas-50 2050 30 40
wind-15 2015 25 130
wind-20 2020 25 120
wind-30 2030 30 110
wind-50 2050 30 100

Table 5: network.generators for our example

index (a, t) wind-15 wind-20 wind-30 . . .

(2020,summer) 0.3 0.32 0
(2020,winter) 0.5 0.52 0
(2030,summer) 0.3 0.32 0.35
(2030,winter) 0.5 0.52 0.55
(2050,spring) 0 0 0.4
(2050,summer) 0 0 0.5
(2050,autumn) 0 0 0.5
(2050,winter) 0 0 0.6

Table 6: network.generators_t.p_max_pu for our example

We have constraints for the energy balance (would in reality be for each node with transmission lines, etc.):∑
s|bs≤a<bs+Ls

gs,a,t = da,t ↔ λa,t ∀a, t ∈ Ta (5)

Then for generator constraints:

0 ≤ gs,a,t ≤ ḡs,a,tGs ∀s, a ∈ [bs, bs + 1, . . . bs + Ls − 1], t ∈ Ta (6)

CO2 can be defined in network.global_constraints either for a particular year a:∑
s|bs≤a<bs+Ls

∑
t∈Ta

es

ηs
wa,tgs,a,t ≤ CAPa ↔ λa ∀a (7)

or as a budget for all investment periods (note that now we’re using the energy weighting va):∑
a

va

∑
s|bs≤a<bs+Ls

∑
t∈Ta

es

ηs
wa,tgs,a,t ≤ CAP ↔ λ (8)

For the total installable potential Ḡr,n,a for each technology r and each node n due to land restrictions, etc., we will
need something like: ∑

s|bs≤a<bs+Ls&rs=r&ns=n

Gs ≤ Ḡr,n,a ∀r, n, a (9)

For this we will need to tell PyPSA that e.g. wind-15, wind-20, wind-30, wind-50 are technology r (could be just
carrier?) and then what the Ḡr,n,a are (new type of global constraint?).

For endogenous learning, we will need to sum up all the capacity ever built from wind, solar PV, electrolysers etc.
Lisa Zeyen had investment budgets per investment period in her MA thesis, which reflected limits to the amount

of financing that can be raised in each year.
Lisa also had costs for dismantling plants early, but we agreed to leave this feature for now. It gets complicated to

track O&M costs etc.
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